Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34909659

ABSTRACT

In this study novel derivatives of 1,2,4-triazole pyridine coupled with Schiff base were obtained in altered aromatic aldehyde and 4-((5-(pyridin-3-yl)-4H-1,2,4-triazol-3-ylthio)methyl)benzenamine reactions. Thin layer chromatography and melting point determination were employed to verify the purity of hybrid derivatives. The structures of the hybrid derivatives were interpreted using methods comprising infrared, nuclear magnetic resonance, and mass spectroscopy. The in vitro anti-microbial properties and minimum inhibitory concentration were determined with Gram-positive and Gram-negative bacteria. Among the derivatives produced, two derivatives comprising (Z)-2-((4-((5-(pyridine-3-yl)-4H-1,2,4-triazol-3-ylthio)methyl)phenylimino)methyl)phenoland (Z)-2-methoxy-5-((4-((5-(pyridine-3-yl)-4H-1,2,4-triazol-3- ylthio)methyl)phenylimino)methyl)phenol obtained promising results as antibacterial agents. After synthesizing different derivatives, docking studies were performed and the scores range from -10.3154 to -12.962 â€‹kcal/mol.

2.
Indian J Pharm Sci ; 75(6): 619-27, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24591735

ABSTRACT

Interpenetrating polymer network hydrogel beads of pectin and sodium carboxymethyl xanthan were prepared by ionotropic gelation with Al(+3) ions and covalent cross-linking with glutaraldehyde for sustained delivery of diltiazem hydrochloride. Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning colorimetry and scanning electron microscopy were used to characterise the hydrogel beads. The swelling of the hydrogel and the release of drug were relatively low in pH 1.2 buffer solutions. However, higher swelling and drug release were observed in pH 6.8 buffer solutions. The carboxyl functional groups of hydrogels undergo ionisation and the osmotic pressure inside the beads increases resulting in higher swelling and drug release in higher pH. The release of drug depends on concentration of polymer, amount and exposure time of cross-linker and drug content in the hydrogel matrices. The present study indicated that the hydrogel beads minimised the drug release in pH 1.2 buffer solutions and to prolong the drug release in pH 6.8 buffer solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...