Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37034724

ABSTRACT

Transition between activation and quiescence programs in hematopoietic stem and progenitor cells (HSC/HSPCs) is perceived to be governed intrinsically and by microenvironmental co-adaptation. However, HSC programs dictating both transition and adaptability, remain poorly defined. Single cell multiome analysis divulging differential transcriptional activity between distinct HSPC states, indicated for the exclusive absence of Fli-1 motif from quiescent HSCs. We reveal that Fli-1 activity is essential for HSCs during regenerative hematopoiesis. Fli-1 directs activation programs while manipulating cellular sensory and output machineries, enabling HSPCs co-adoptability with a stimulated vascular niche. During regenerative conditions, Fli-1 presets and enables propagation of niche-derived Notch1 signaling. Constitutively induced Notch1 signaling is sufficient to recuperate functional HSC impairments in the absence of Fli-1. Applying FLI-1 modified-mRNA transduction into lethargic adult human mobilized HSPCs, enables their vigorous niche-mediated expansion along with superior engraftment capacities. Thus, decryption of stem cell activation programs offers valuable insights for immune regenerative medicine.

2.
Nat Cardiovasc Res ; 1: 882-899, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36713285

ABSTRACT

Current dogma dictates that during adulthood, endothelial cells (ECs) are locked in an immutable stable homeostatic state. By contrast, herein we show that maintenance of EC fate and function are linked and active processes, which depend on the constitutive cooperativity of only two ETS-transcription factors (TFs) ERG and Fli1. While deletion of either Fli1 or ERG manifest subtle vascular dysfunction, their combined genetic deletion in adult EC results in acute vasculopathy and multiorgan failure, due to loss of EC fate and integrity, hyperinflammation, and spontaneous thrombosis, leading to death. ERG and Fli1 co-deficiency cause rapid transcriptional silencing of pan- and organotypic vascular core genes, with dysregulation of inflammation and coagulation pathways. Vascular hyperinflammation leads to impaired hematopoiesis with myeloid skewing. Accordingly, enforced ERG and FLI1 expression in adult human mesenchymal stromal cells activates vascular programs and functionality enabling engraftment of perfusable vascular network. GWAS-analysis identified vascular diseases are associated with FLI1/Erg mutations. Constitutive expression of ERG and Fli1 uphold EC fate, physiological function, and resilience in adult vasculature; while their functional loss can contribute to systemic human diseases.

3.
Nat Cell Biol ; 21(11): 1403-1412, 2019 11.
Article in English | MEDLINE | ID: mdl-31685984

ABSTRACT

The development of effective therapies against brain metastasis is currently hindered by limitations in our understanding of the molecular mechanisms driving it. Here we define the contributions of tumour-secreted exosomes to brain metastatic colonization and demonstrate that pre-conditioning the brain microenvironment with exosomes from brain metastatic cells enhances cancer cell outgrowth. Proteomic analysis identified cell migration-inducing and hyaluronan-binding protein (CEMIP) as elevated in exosomes from brain metastatic but not lung or bone metastatic cells. CEMIP depletion in tumour cells impaired brain metastasis, disrupting invasion and tumour cell association with the brain vasculature, phenotypes rescued by pre-conditioning the brain microenvironment with CEMIP+ exosomes. Moreover, uptake of CEMIP+ exosomes by brain endothelial and microglial cells induced endothelial cell branching and inflammation in the perivascular niche by upregulating the pro-inflammatory cytokines encoded by Ptgs2, Tnf and Ccl/Cxcl, known to promote brain vascular remodelling and metastasis. CEMIP was elevated in tumour tissues and exosomes from patients with brain metastasis and predicted brain metastasis progression and patient survival. Collectively, our findings suggest that targeting exosomal CEMIP could constitute a future avenue for the prevention and treatment of brain metastasis.


Subject(s)
Brain Neoplasms/genetics , Exosomes/metabolism , Gene Expression Regulation, Neoplastic , Hyaluronoglucosaminidase/genetics , Neovascularization, Pathologic/genetics , Tumor Microenvironment/genetics , Animals , Brain/metabolism , Brain/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Chemokine CCL1/genetics , Chemokine CCL1/metabolism , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Exosomes/pathology , Humans , Hyaluronoglucosaminidase/metabolism , Mice , Mice, Inbred C57BL , Mice, Nude , Neoplasm Metastasis , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/mortality , Neovascularization, Pathologic/pathology , Signal Transduction , Survival Analysis , Tumor Burden , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Xenograft Model Antitumor Assays
4.
J Clin Invest ; 127(12): 4242-4256, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29058691

ABSTRACT

Angiocrine factors, such as Notch ligands, supplied by the specialized endothelial cells (ECs) within the bone marrow and splenic vascular niche play an essential role in modulating the physiology of adult hematopoietic stem and progenitor cells (HSPCs). However, the relative contribution of various Notch ligands, specifically jagged-2, to the homeostasis of HSPCs is unknown. Here, we show that under steady state, jagged-2 is differentially expressed in tissue-specific vascular beds, but its expression is induced in hematopoietic vascular niches after myelosuppressive injury. We used mice with EC-specific deletion of the gene encoding jagged-2 (Jag2) to demonstrate that while EC-derived jagged-2 was dispensable for maintaining the capacity of HSPCs to repopulate under steady-state conditions, by activating Notch2 it did contribute to the recovery of HSPCs in response to myelosuppressive conditions. Engraftment and/or expansion of HSPCs was dependent on the expression of endothelial-derived jagged-2 following myeloablation. Additionally, jagged-2 expressed in bone marrow ECs regulated HSPC cell cycle and quiescence during regeneration. Endothelial-deployed jagged-2 triggered Notch2/Hey1, while tempering Notch2/Hes1 signaling in HSPCs. Collectively, these data demonstrate that EC-derived jagged-2 activates Notch2 signaling in HSPCs to promote hematopoietic recovery and has potential as a therapeutic target to accelerate balanced hematopoietic reconstitution after myelosuppression.


Subject(s)
Adult Stem Cells/metabolism , Graft Survival , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Jagged-2 Protein/biosynthesis , Signal Transduction , Allografts , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Gene Deletion , Jagged-2 Protein/genetics , Mice , Mice, Transgenic , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Transcription Factor HES-1/genetics , Transcription Factor HES-1/metabolism
5.
Nature ; 545(7655): 439-445, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28514438

ABSTRACT

Developmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully reprogramming adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of the transcription-factor-encoding genes Fosb, Gfi1, Runx1, and Spi1 (collectively denoted hereafter as FGRS) and vascular-niche-derived angiocrine factors. The induction phase (days 0-8) of conversion is initiated by expression of FGRS in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (days 8-20), RUNX1+ FGRS-transduced endothelial cells commit to a haematopoietic fate, yielding rEC-HSCs that no longer require FGRS expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (days 20-28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, and can be used for clonal engraftment and serial primary and secondary multi-lineage reconstitution, including antigen-dependent adaptive immune function. Inhibition of TGFß and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Pluripotency-independent conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders.


Subject(s)
Cell Differentiation , Cellular Reprogramming , Endothelium/cytology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Adaptive Immunity , Aging/genetics , Animals , Cell Line , Cell Lineage , Cell Self Renewal , Clone Cells/cytology , Clone Cells/transplantation , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Hematopoiesis , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
6.
Nat Commun ; 8: 13963, 2017 01 16.
Article in English | MEDLINE | ID: mdl-28091527

ABSTRACT

Transplanting vascular endothelial cells (ECs) to support metabolism and express regenerative paracrine factors is a strategy to treat vasculopathies and to promote tissue regeneration. However, transplantation strategies have been challenging to develop, because ECs are difficult to culture and little is known about how to direct them to stably integrate into vasculature. Here we show that only amniotic cells could convert to cells that maintain EC gene expression. Even so, these converted cells perform sub-optimally in transplantation studies. Constitutive Akt signalling increases expression of EC morphogenesis genes, including Sox17, shifts the genomic targeting of Fli1 to favour nearby Sox consensus sites and enhances the vascular function of converted cells. Enforced expression of Sox17 increases expression of morphogenesis genes and promotes integration of transplanted converted cells into injured vessels. Thus, Ets transcription factors specify non-vascular, amniotic cells to EC-like cells, whereas Sox17 expression is required to confer EC function.


Subject(s)
Endothelial Cells/transplantation , Endothelium, Vascular/metabolism , SOXF Transcription Factors/metabolism , Vascular Diseases/therapy , Amnion/cytology , Amnion/embryology , Amnion/metabolism , Animals , Endothelial Cells/metabolism , Endothelium, Vascular/physiopathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Regeneration , SOXF Transcription Factors/genetics , Vascular Diseases/genetics , Vascular Diseases/metabolism , Vascular Diseases/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...