Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
IEEE Trans Vis Comput Graph ; 19(2): 306-18, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22566468

ABSTRACT

A novel graph-cuts-based method is proposed for reconstructing open surfaces from unordered point sets. Through a Boolean operation on the crust around the data set, the open surface problem is translated to a watertight surface problem within a restricted region. Integrating the variational model, Delaunay-based tetrahedral mesh and multiphase technique, the proposed method can reconstruct open surfaces robustly and effectively. Furthermore, a surface reconstruction method with domain decomposition is presented, which is based on the new open surface reconstruction method. This method can handle more general surfaces, such as nonorientable surfaces. The algorithm is designed in a parallel-friendly way and necessary measures are taken to eliminate cracks and conflicts between the subdomains. Numerical examples are included to demonstrate the robustness and effectiveness of the proposed method on watertight, open orientable, open nonorientable surfaces and combinations of such.

2.
IEEE Trans Image Process ; 20(5): 1199-210, 2011 May.
Article in English | MEDLINE | ID: mdl-21047714

ABSTRACT

Minimization of total variation (TV) is a well-known method for image denoising. Recently, the relationship between TV minimization problems and binary MRF models has been much explored. This has resulted in some very efficient combinatorial optimization algorithms for the TV minimization problem in the discrete setting via graph cuts. To overcome limitations, such as staircasing effects, of the relatively simple TV model, variational models based upon higher order derivatives have been proposed. The Euler's elastica model is one such higher order model of central importance, which minimizes the curvature of all level lines in the image. Traditional numerical methods for minimizing the energy in such higher order models are complicated and computationally complex. In this paper, we will present an efficient minimization algorithm based upon graph cuts for minimizing the energy in the Euler's elastica model, by simplifying the problem to that of solving a sequence of easy graph representable problems. This sequence has connections to the gradient flow of the energy function, and converges to a minimum point. The numerical experiments show that our new approach is more effective in maintaining smooth visual results while preserving sharp features better than TV models.


Subject(s)
Image Enhancement/methods , Algorithms , Imaging, Three-Dimensional/methods , Models, Statistical , Pattern Recognition, Automated
SELECTION OF CITATIONS
SEARCH DETAIL