Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Int Immunopharmacol ; 136: 112284, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823179

ABSTRACT

Cathepsin B (CTSB) and inflammatory cytokines are critical in initiating and developing pancreatitis. Calcineurin, a central calcium (Ca2+)-responsive signaling molecule, mediates acinar cell death and inflammatory responses leading to pancreatitis. However, the detailed mechanisms for regulating CTSB activity and inflammatory cytokine production are unknown. Myricetin (MC) exhibits various biological activities, including anti-inflammatory effects. Here, we aimed to investigate MC effects on pancreatitis and the underlying mechanisms. Prophylactic and therapeutic MC treatment ameliorated the severity of cerulein-, L-arginine-, and PDL-induced acute pancreatitis (AP). The inhibition of CTSB activity by MC was mediated via decreased calcineurin activity and macrophage infiltration, not neutrophils infiltration, into the pancreas. Additionally, calcineurin activity inhibition by MC prevented the phosphorylation of Ca2+/CaM-dependent protein kinase kinase 2 (CaMKK2) during AP, resulting in the inhibition of CaMKIV phosphorylation and adenosine monophosphate-activated protein kinase (AMPK) dephosphorylation. Furthermore, MC reduced nuclear factor-κB activation by modulating the calcineurin-CaMKIV-IKKα/ß-Iκ-Bα and calcineurin-AMPK-sirtuin1 axes, resulting in reduced production of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6. Our results showed that MC alleviated AP severity by inhibiting acinar cell death and inflammatory responses, suggesting that MC as a calcineurin and CaMKK2 signaling modulator may be a potential treatment for AP.

2.
Curr Issues Mol Biol ; 46(4): 3081-3091, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38666923

ABSTRACT

Oxidative stress, a driver of liver pathology, remains a challenge in clinical management, necessitating innovative approaches. In this research, we delved into the therapeutic potential of polyphenols for oxidative liver injury using a multiscale network analysis framework. From the Phenol-Explorer database, we curated a list of polyphenols along with their corresponding PubChem IDs. Verified target information was then collated from multiple databases. We subsequently measured the propagative effects of these compounds and prioritized a ranking based on their correlation scores for oxidative liver injury. This result underwent evaluation to discern its effectiveness in differentiating between known and unknown polyphenols, demonstrating superior performance over chance level in distinguishing these compounds. We found that lariciresinol and isopimpinellin yielded high correlation scores in relation to oxidative liver injury without reported evidence. By analyzing the impact on a multiscale network, we found that lariciresinol and isopimpinellin were predicted to offer beneficial effects on the disease by directly acting on targets such as CASP3, NR1I2, and CYP3A4 or by modulating biological functions related to the apoptotic process and oxidative stress. This study not only corroborates the efficacy of identified polyphenols in liver health but also opens avenues for future investigations into their mechanistic actions.

3.
Curr Issues Mol Biol ; 46(1): 884-895, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275670

ABSTRACT

Arecae pericarpium (AP), the fruit peel of the betel palm, is a traditional Oriental herbal medicine. AP is used to treat various diseases and conditions, such as ascites, edema, and urinary retention, in traditional Korean medicine. Recent studies have demonstrated its anti-obesity and antibacterial effects; however, its anti-neuroinflammatory effects have not yet been reported. Therefore, we investigated the anti-neuroinflammatory effects of AP on lipopolysaccharide (LPS)-stimulated mouse microglia in this study. To determine the anti-neuroinflammatory effects of AP on BV2 microglial cells, we examined the production of nitric oxide (NO) using Griess assay and assessed the mRNA expression levels of inflammatory mediators, such as inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, and pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α, using a real-time reverse transcription-polymerase chain reaction. Furthermore, we determined the levels of mitogen-activated protein kinases and IκBα via Western blotting to understand the regulating mechanisms of AP. AP treatment decreased NO production in LPS-stimulated BV2 cells. Additionally, AP suppressed the expression of iNOS and COX-2 and the production of pro-inflammatory cytokines. AP also inhibited the activation of p38 and nuclear factor-kappa B (NF-κB) in LPS-stimulated BV2 cells. Therefore, AP exerts anti-neuroinflammatory effects via inactivation of the p38 and NF-κB pathways.

4.
Int Immunopharmacol ; 124(Pt B): 111073, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37844468

ABSTRACT

Guggulsterone (GS) is a phytosterol used to treat inflammatory diseases. Although many studies have examined the anti-inflammatory activities of GS, the detailed mechanisms of GS in lipopolysaccharide (LPS)-induced inflammation and endotoxemia have not yet been examined. Therefore, we investigated the anti-inflammatory effects of GS on LPS-induced inflammation. In murine peritoneal macrophages, the anti-inflammatory activity of GS was primarily mediated by heme oxygenase-1 (HO-1) induction. HO-1 induction by GS was mediated by GSH depletion and reactive oxygen species (ROS) production. The ROS generated by GS caused the phosphorylation of GSK3ß (ser9/21) and p38, leading to the translocation of nuclear factor erythroid-related factor 2 (Nrf2), which ultimately induced HO-1. In addition, GS pretreatment significantly inhibited inducible nitric oxide synthase (iNOS), iNOS-derived NO, and COX-2 protein and mRNA expression, and production of COX-derived prostaglandin PGE2, interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF-α). In a mouse model of endotoxemia, GS treatment prolonged survival and inhibited the expression of inflammatory mediators, including IL-1ß, IL-6, and TNF-α. GS treatment also inhibited LPS-induced liver injury. These results suggest that GS-induced HO-1 could exert anti-inflammatory effects via ROS-dependent GSK (ser21/9)-p38 phosphorylation and nuclear translocation of Nrf2.


Subject(s)
Endotoxemia , Lipopolysaccharides , Animals , Mice , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Heme Oxygenase-1/metabolism , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Endotoxemia/chemically induced , Endotoxemia/drug therapy , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism
5.
Medicina (Kaunas) ; 59(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37893448

ABSTRACT

Background and Objectives: Diabetes can cause various vascular complications. The Compounded Danshen-Dripping-Pill (CDDP) is widely used in China. This study aimed to analyze the effectiveness and safety of CDDP in the blood viscosity (BV) with type 2 diabetes mellitus (T2DM). Materials and Methods: We conducted a systematic search of seven databases from their inception to July 2022 for randomized controlled trials that used CDDP to treat T2DM. To evaluate BV, we measured low shear rate (LSR), high shear rate (HSR), and plasma viscosity (PV). Homocysteine and adiponectin levels were also assessed as factors that could affect BV. Results: We included 18 studies and 1532 patients with T2DM. Meta-analysis revealed that CDDP significantly reduced LSR (mean difference [MD] -2.74, 95% confidence interval [CI] -3.77 to -1.72), HSR (MD -0.86, 95% CI -1.08 to -0.63), and PV (MD -0.37, 95% CI -0.54 to -0.19) compared to controls. CDDP also reduced homocysteine (MD -8.32, 95% CI -9.05 to -7.58), and increased plasma adiponectin (MD 2.72, 95% CI 2.13 to 3.32). Adverse events were reported less frequently in the treatment groups than in controls. Conclusions: CDDP is effective in reducing BV on T2DM. However, due to the poor design and quality of the included studies, high-quality, well-designed studies are required in the future.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Humans , Diabetes Mellitus, Type 2/complications , Cardiotonic Agents , Blood Viscosity , Adiponectin , Drugs, Chinese Herbal/adverse effects , Cardiovascular Diseases/complications , Homocysteine
6.
Mol Med Rep ; 28(5)2023 11.
Article in English | MEDLINE | ID: mdl-37732516

ABSTRACT

Chronic pancreatitis (CP) is a pancreatic inflammatory disease associated with histological changes, including fibrosis, acinar cell loss and immune cell infiltration, and leads to damage of the pancreas, which results in pain, weight loss and loss of pancreas function. Catechin or catechin hydrate (CH) has antioxidant, anticancer and immune­regulatory effects. However, unlike other catechins, the antifibrotic effects of (+)­CH have not been widely studied in many diseases, including CP. Therefore, the anti­fibrotic effects of (+)­CH against CP were evaluated in the present study. To assess the prophylactic effects of CH, (+)­CH (1, 5 or 10 mg/kg) or ethanol was administered 1 h before first cerulein (50 µg/kg) injection. To assess the therapeutic effects, (+)­CH (5 mg/kg) or ethanol was administered after cerulein injection for one or two weeks. In both methods, cerulein was injected intraperitoneally into mice once every hour, six times a day, four times a week, for a total of three weeks, to induce CP. The data showed that (+)­CH markedly inhibited glandular destruction and inflammation during CP. Moreover, (+)­CH prevented pancreatic stellate cell (PSC) activation and the production of extracellular matrix components, such as fibronectin 1 and collagens, which suggested that it may act as a novel therapeutic agent. Furthermore, the mechanism and effectiveness of (+)­CH on pancreatic fibrosis were investigated in isolated PSCs. (+)­CH suppressed the activation of Smad2 and fibrosis factors that act through transforming growth factor­ß (TGF­ß) or platelet­derived growth factor. These findings suggest that (+)­CH exhibits antifibrotic effects in cerulein­induced CP by inactivating TGF­ß/Smad2 signaling.


Subject(s)
Catechin , Pancreatic Diseases , Pancreatitis, Chronic , Animals , Mice , Catechin/pharmacology , Ceruletide , Pancreatitis, Chronic/chemically induced , Pancreatitis, Chronic/drug therapy , Pancreas , Ethanol/adverse effects
8.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36293111

ABSTRACT

Acute kidney injury (AKI) is a major side effect of cisplatin, a crucial anticancer agent. Therefore, it is necessary to develop drugs to protect against cisplatin-induced nephrotoxicity. Ojeoksan (OJS), a traditional blended herbal prescription, is mostly used in Korea; however, there are no reports on the efficacy of OJS against cisplatin-induced AKI. To investigate the reno-protective effect of OJS on AKI, we orally administered 50, 100, and 200 mg/kg of OJS to mice 1 h before intraperitoneal injection with 20 mg/kg of cisplatin. OJS inhibited the increase of blood urea nitrogen (BUN) and serum creatinine (SCr) levels and reduced histological changes in the kidney, like loss of brush borders, renal tubular necrosis, and cast formation. Administration of OSJ reduced the levels of pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. In addition, OJS inhibited the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways in cisplatin-induced AKI. These results suggest that OJS attenuates cisplatin-induced AKI by downregulating the MAPK and NF-κB pathways.


Subject(s)
Acute Kidney Injury , Antineoplastic Agents , Mice , Animals , NF-kappa B/metabolism , Cisplatin/pharmacology , Mitogen-Activated Protein Kinases/metabolism , Creatinine , Interleukin-6/metabolism , Signal Transduction , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Kidney/metabolism , Antineoplastic Agents/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Cytokines/metabolism
9.
Front Pharmacol ; 13: 941955, 2022.
Article in English | MEDLINE | ID: mdl-36105227

ABSTRACT

Chronic pancreatitis (CP) is a chronic inflammatory disease of the pancreas with irreversible morphological changes. Arecae pericarpium (ARP), known to improve gastrointestinal disorders, has not yet been reported to inhibit fibrosis in CP. Therefore, we investigated the beneficial effects of ARP on cerulein-induced CP. Cerulein (50 µg/kg) was administered intraperitoneally to mice every hour, six times a day, four times a week for a total of 3 weeks to induce CP. To ascertain the prophylactic effects of ARP, ARP water extract (50, 100, or 200 mg/kg) or saline was administered intraperitoneally 1 h before the onset of CP. To determine the therapeutic effects of ARP, ARP water extract (200 mg/kg) or saline was administered for a total of 1 week or 2 weeks, starting 2 weeks or 1 week after the onset of CP. The pancreas was collected immediately for histological analysis. Additionally, to determine the effectiveness and mechanism of ARP in alleviating pancreatic fibrosis, pancreatic stellate cells (PSCs) were isolated. ARP treatment considerably improved glandular atrophy and inflammation and repressed collagen deposition in the pancreas. Furthermore, ARP water extract inhibited extracellular matrix (ECM) constituents such as alpha-smooth muscle actin (α-SMA), collagen I, and fibronectin 1 (FN1) in pancreatic tissue and PSCs. ARP also suppressed transforming growth factor-ß (TGF-ß) signaling by inhibiting Smad2 phosphorylation. Our study suggests that ARP exhibits anti-fibrotic effects in cerulein-induced CP by inhibiting TGF-ß/Smad signaling.

10.
J Investig Med ; 70(5): 1285-1292, 2022 06.
Article in English | MEDLINE | ID: mdl-35078865

ABSTRACT

Chronic pancreatitis (CP) is a pathological fibroinflammatory syndrome of the pancreas. Currently, there are no therapeutic agents available for treating CP-associated pancreatic fibrosis. Fraxinus rhynchophylla (FR) reportedly exhibits anti-inflammatory, antioxidative and antitumor activities. Although FR possesses numerous properties associated with the regulation of diverse diseases, the effects of FR on CP remain unknown. Herein, we examined the effects of FR on CP. For CP induction, mice were intraperitoneally administered cerulein (50 µg/kg) 6 times a day, 4 days per week for 3 weeks. FR extract (100 or 400 mg/kg) or saline (control group) was intraperitoneally injected 1 hour before the first cerulein injection. After 3 weeks, the pancreas was harvested for histological analysis. In addition, pancreatic stellate cells (PSCs) were isolated to examine the antifibrogenic effects and regulatory mechanisms of FR. Administration of FR significantly inhibited histological damage in the pancreas, increased pancreatic acinar cell survival, decreased PSC activation and collagen deposition, and decreased pro-inflammatory cytokines. Moreover, FR treatment inhibited the expression of fibrotic mediators, such as α-smooth muscle actin (α-SMA), collagen, fibronectin 1, and decreased pro-inflammatory cytokines in isolated PSCs stimulated with transforming growth factor (TGF)-ß. Furthermore, FR treatment suppressed the phosphorylation of Smad 2/3 but not of Smad 1/5 in TGF-ß-stimulated PSCs. Collectively, these results suggest that FR ameliorates pancreatic fibrosis by inhibiting PSC activation during CP.


Subject(s)
Fraxinus , Pancreatitis, Chronic , Animals , Ceruletide/metabolism , Ceruletide/pharmacology , Ceruletide/therapeutic use , Collagen/metabolism , Collagen/pharmacology , Collagen/therapeutic use , Fibrosis , Humans , Mice , Pancreas/pathology , Pancreatitis, Chronic/drug therapy , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/pathology , Plant Bark/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
11.
Int J Mol Sci ; 22(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206763

ABSTRACT

Acute pancreatitis (AP) is an inflammatory disorder, involving acinar cell death and the release of inflammatory cytokines. Currently, there are limited effective therapeutic agents for AP. Betulinic acid (BA) is a pentacyclic triterpenoid extracted from Betula platyphylla that has been shown to have anti-inflammatory effects. In this study, we aimed to investigate the effects of BA on AP and elucidate the potential underlying mechanisms. AP was induced in mice through six intraperitoneal injections of cerulein. After the last cerulein injection, the mice were sacrificed. Our results revealed that pre- and post-treatment with BA significantly reduced the severity of pancreatitis, as evidenced by a decrease in histological damage in the pancreas and lung, serum amylase and lipase activity and pancreatic myeloperoxidase activity. Furthermore, BA pretreatment reduced proinflammatory cytokine production, augmentation of chemokines, and infiltration of macrophages and neutrophils in the pancreas of AP mice. In addition, mice that were pretreated with BA showed a reduction in Iκ-Bα degradation and nuclear factor-kappa B (NF-κB) binding activity in the pancreas. Moreover, BA reduced the production of proinflammatory cytokines and NF-κB activation in pancreatic acinar cells (PACs). These findings suggest that BA may have prophylactic and therapeutic effects on AP via inhibition of the NF-κB signaling pathway.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , NF-kappa B/metabolism , Pancreatitis/drug therapy , Pentacyclic Triterpenes/therapeutic use , Amylases/blood , Animals , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Cytokines/drug effects , Cytokines/metabolism , Female , Lipase/blood , Lung/drug effects , Lung/metabolism , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Neutrophils , Pancreas/drug effects , Pancreas/metabolism , Pentacyclic Triterpenes/pharmacology , Peroxidase/metabolism , Signal Transduction , Betulinic Acid
12.
Article in English | MEDLINE | ID: mdl-33976703

ABSTRACT

Nardostachys spp. have been widely used in Asia as a folk medicine. In particular, the extracts of Nardostachys jatamansi, a species that grows in China, India, and Tibet, have been used to treat mental disorders, hyperlipidemia, hypertension, and convulsions. In this investigation, the potential of 20% aqueous ethanol extract of N. jatamansi (NJ20) as a botanical drug was explored by chemically investigating its constituents and its anti-neuroinflammatory effects on lipopolysaccharide- (LPS-) induced in vitro and in vivo models. Nine secondary metabolites were isolated and identified from NJ20, and quantitative analysis of these metabolites revealed desoxo-narchinol A as the major constituent. In LPS-challenged cells, pretreatment with NJ20 inhibited the LPS-induced excessive production of proinflammatory mediators, such as nitric oxide, prostaglandin E2, interleukin- (IL-) 1ß, IL-6, and tumor necrosis factor-α. NJ20 also attenuated the overexpression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2. Additionally, pre-intraperitoneal injection of NJ20 downregulated the mRNA overexpression of IL-1ß, IL-6, and iNOS in the prefrontal cortex, hypothalamus, and hippocampus of the LPS-stimulated C57BL/c mouse model. Chemical and biological investigations of NJ20 revealed that it is a potential inhibitor of LPS-induced neuroinflammatory responses in microglial cells and mouse models. The major active constituent of NJ20, desoxo-narchinol A, demonstrated anti-neuroinflammatory effects. Hence, our findings indicate that NJ20 may be a promising herbal mixture for developing a functional product and/or herbal drug for treating neuroinflammatory diseases.

13.
Int J Mol Sci ; 22(3)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572597

ABSTRACT

Cisplatin is the most widely used chemotherapeutic agent. However, it often causes nephrotoxicity, which results in acute kidney injury (AKI). Therefore, we urgently need a drug that can reduce the nephrotoxicity induced by cisplatin. Loganin is a major iridoid glycoside isolated from Corni fructus that has been used as an anti-inflammatory agent in various pathological models. However, the renal protective activity of loganin remains unclear. In this study, to examine the protective effect of loganin on cisplatin-induced AKI, male C57BL/6 mice were orally administered with loganin (1, 10, and 20 mg/kg) 1 h before intraperitoneal injection of cisplatin (10 mg/kg) and sacrificed at three days after the injection. The administration of loganin inhibited the elevation of blood urea nitrogen (BUN) and creatinine (CREA) in serum, which are used as biomarkers of AKI. Moreover, histological kidney injury, proximal tubule damages, and renal cell death, such as apoptosis and ferroptosis, were reduced by loganin treatment. Also, pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α, reduced by loganin treatment. Furthermore, loganin deactivated the extracellular signal-regulated kinases (ERK) 1 and 2 during AKI. Taken together, our results suggest that loganin may attenuate cisplatin-induced AKI through the inhibition of ERK1/2.


Subject(s)
Acute Kidney Injury/drug therapy , Cisplatin/adverse effects , Iridoids/administration & dosage , MAP Kinase Signaling System/drug effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Animals , Apoptosis/drug effects , Blood Urea Nitrogen , Cell Death/drug effects , Creatinine/blood , Cytokines/metabolism , Kidney/drug effects , Kidney/pathology , Male , Mice , Mice, Inbred C57BL
14.
Int Immunopharmacol ; 88: 106900, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32829089

ABSTRACT

Acute pancreatitis (AP) refers to inflammation in the pancreas, which may lead to death in severe cases. Coenzyme Q10 (Q10), generally known to generate energy, plays an important role as an anti-oxidant and anti-inflammatory effector. Here, we showed the effect of Q10 on inflammatory response in murine AP model. For this study, we induced AP by injection of cerulein intraperitoneally or pancreatic duct ligation (PDL) in mice. The level of cytokines and digestive enzymes were measured in pancreas, and blood. All pancreatic tissues were excised for investigation such as histological changes, infiltration of immune cells. Administration of Q10 attenuated the severity of AP and its associated pulmonary complication as shown by reduction of acinar cell death, parenchymal edema, inflammatory cell infiltration and alveolar thickening in both cerulein-induced AP and PDL-induced AP. Moreover, reduction of the cytokines such as interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α were observed in pancreas and pancreatic acinar cells by Q10. Furthermore, Q10 reduced the infiltration of immune cells such as monocytes and neutrophils and augmentation of chemokines such as CC chemokine-2 (CCL2) and C-X-C chemokine-2 (CXCL2) in pancreas of AP mice. In addition, Q10 deactivates the phosphorylation of extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) in pancreas. In conclusion, these observations suggest that Q10 could attenuate the pancreatic damage and its associated pulmonary complications via inhibition of inflammatory cytokines and inflammatory cell infiltration and that the deactivation of ERK and JNK by Q10 might contribute to the attenuation of AP.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Pancreatitis/drug therapy , Ubiquinone/analogs & derivatives , Animals , Anti-Inflammatory Agents/pharmacology , Ceruletide , Cytokines/genetics , Cytokines/immunology , Female , Lung/drug effects , Lung/pathology , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL , Monocytes/drug effects , Monocytes/immunology , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Neutrophils/immunology , Pancreas/drug effects , Pancreas/immunology , Pancreas/pathology , Pancreatitis/chemically induced , Pancreatitis/immunology , Pancreatitis/pathology , Ubiquinone/pharmacology , Ubiquinone/therapeutic use
15.
Am J Chin Med ; 48(4): 987-1003, 2020.
Article in English | MEDLINE | ID: mdl-32431181

ABSTRACT

Our previous report revealed that Gardenia jasminoides (GJ) has protective effects against acute pancreatitis. So, we examined whether aqueous extract of GJ has anti-inflammation and antifibrotic effects even against cerulein-induced chronic pancreatitis (CP). CP was induced in mice by an intraperitoneal injection of a stable cholecystokinin (CCK) analogue, cerulein, six times a day, four days per week for three weeks. GJ extract (0.1 or 1[Formula: see text]g/kg) or saline (control group) were intraperitoneally injected 1[Formula: see text]h before first cerulein injection. After three weeks of stimulation, the pancreas was harvested for the examination of several fibrotic parameters. In addition, pancreatic stellate cells (PSCs) were isolated using gradient methods to examine the antifibrogenic effects of GJ. In the cerulein-induced CP mice, the histological features of the pancreas showed severe tissue damage such as enlarged interstitial spaces, inflammatory cell infiltrate and glandular atrophy, and tissue fibrosis. However, treatment of GJ reduced the severity of CP such as pancreatic edema and inflammatory cell infiltration. Furthermore, treatment of GJ increased pancreatic acinar cell survival, and reduced pancreatic fibrosis and activation of PSC in vivo and in vitro. In addition, GJ treatment inhibited the activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK) in the PSCs. These results suggest that GJ attenuated the severity of CP and the pancreatic fibrosis by inhibiting JNK and ERK activation during CP.


Subject(s)
Ceruletide/adverse effects , Gardenia/chemistry , Pancreatitis, Chronic/drug therapy , Pancreatitis, Chronic/prevention & control , Phytotherapy , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Animals , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Fibrosis , Injections, Intraperitoneal , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Mice, Inbred C57BL , Pancreas/pathology , Pancreatic Stellate Cells/pathology , Pancreatitis, Chronic/chemically induced , Pancreatitis, Chronic/pathology , Plant Extracts/isolation & purification
16.
Pancreas ; 49(1): 89-95, 2020 01.
Article in English | MEDLINE | ID: mdl-31856083

ABSTRACT

OBJECTIVES: In this study, we investigated the anti-inflammatory effects of silymarin on cerulein-induced acute pancreatitis (AP) in mice. METHODS: Cerulein (50 µg/kg) was injected intraperitoneally once hourly for 6 hours to induce AP. To investigate the prophylactic effects of silymarin, dimethyl sulfoxide or silymarin (25, 50, and 100 mg/kg) was injected intraperitoneally 1 hour before cerulein injection. To investigate the therapeutic effects of silymarin, dimethyl sulfoxide or silymarin (100 mg/kg) was injected intraperitoneally 1, 3, or 5 hours after the first cerulein injection. Blood, pancreas, and lungs were harvested 6 hours after the last cerulein injection. RESULTS: Pre- and posttreatment with silymarin decreased the pancreas weight/body weight ratio and serum amylase activity. Furthermore, silymarin treatment inhibited pancreas and lung injury and neutrophil infiltration during cerulein-induced AP. In addition, silymarin inhibited increased secretion of proinflammatory cytokines such as interleukin 1ß, interleukin 6, and tumor necrosis factor α. Finally, mitogen-activated protein kinases (MAPKs) and nuclear factor-κB were activated by cerulein, and only p38 in MAPK was inhibited by silymarin. CONCLUSIONS: These findings suggest that silymarin attenuates the severity of AP through inhibition of p38 MAPKs and that silymarin could be a potential prophylactic and therapeutic agent for the treatment of AP.


Subject(s)
Pancreas/drug effects , Pancreatitis/prevention & control , Severity of Illness Index , Silymarin/pharmacology , Acute Disease , Amylases/blood , Animals , Antioxidants/administration & dosage , Antioxidants/pharmacology , Ceruletide , Cytokines/metabolism , Inflammation Mediators/metabolism , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Organ Size/drug effects , Pancreas/metabolism , Pancreas/pathology , Pancreatitis/chemically induced , Pancreatitis/metabolism , Protective Agents/administration & dosage , Protective Agents/pharmacology , Silymarin/administration & dosage
17.
Mol Med Rep ; 21(1): 258-266, 2020 01.
Article in English | MEDLINE | ID: mdl-31746359

ABSTRACT

The major role of inner medullary collecting duct (IMCD) cells is to maintain water and sodium homeostasis. In addition to the major role, it also participates in the protection of renal and systemic inflammation. Although IMCD cells could take part in renal and systemic inflammation, investigations on renal inflammation in IMCD cells have rarely been reported. Although berberine (BBR) has been reported to show diverse pharmacological effects, its anti­inflammatory and protective effects on IMCD cells have not been studied. Therefore, in the present study, we examined the anti­inflammatory and protective effects of BBR in mouse IMCD­3 (mIMCD­3) cells against lipopolysaccharide (LPS). An MTT assay was carried out to investigate the toxicity of BBR on mIMCD­3 cells. Reverse transcription quantitative­PCR and western blotting were performed to analysis pro­inflammatory molecules and cytokines. Mechanisms of BBR were examined by western blotting and immunocytochemistry. According to previous studies, pro­inflammatory molecules, such as inducible nitric oxide synthase and cyclooxygenase­2, and pro­inflammatory cytokines, such as interleukin (IL)­1ß, IL­6 and tumor necrosis factor­α are increased in LPS­exposed mIMCD­3 cells. However, the production of these pro­inflammatory molecules is significantly inhibited by treatment with BBR. In addition, BBR inhibited translocation of nuclear factor (NF)­κB p65 from the cytosol to the nucleus, and degradation of inhibitory κ­Bα in LPS­exposed mIMCD­3 cells. In conclusion, BBR could inhibit renal inflammatory responses via inhibition of NF­κB signaling and ultimately contribute to amelioration of renal injury during systemic inflammation.


Subject(s)
Berberine/pharmacology , Inflammation/drug therapy , Kidney/drug effects , Transcription Factor RelA/genetics , Animals , Cell Line , Cyclooxygenase 2/genetics , Gene Expression Regulation/drug effects , Humans , Inflammation/chemically induced , Inflammation/pathology , Interleukin-1beta/genetics , Interleukin-6/genetics , Kidney/pathology , Lipopolysaccharides/toxicity , Mice , NF-kappa B/genetics , Nitric Oxide Synthase/genetics , Signal Transduction/drug effects
18.
Mol Immunol ; 114: 620-628, 2019 10.
Article in English | MEDLINE | ID: mdl-31542607

ABSTRACT

Acute pancreatitis (AP) is a severe inflammatory condition of the pancreas, with no specific treatment available. We have previously reported that Nardostachys jatamansi (NJ) ameliorates cerulein-induced AP. However, the specific compound responsible for this inhibitory effect has not been identified. Therefore, in the present study, we focused on a single compound, 8α-hydroxypinoresinol (HP), from NJ. The aim of this study was to determine the effect of HP on the development of pancreatitis in mice and to explore the underlying mechanism(s). AP was induced by the injection of cerulein (50 µg/kg/h) for 6 h. HP (0.5, 5 or 10 mg/kg, i.p.) was administered 1 h prior to and 1, 3 or 5 h after the first cerulein injection, with vehicle- and DMSO-treated groups as controls. Blood samples were collected to determine serum levels of amylase, lipase, and cytokines. The pancreas was removed for morphological examination, myeloperoxidase (MPO) assays, cytokine assays, and assessment of nuclear factor (NF)-κB activation. The lungs were removed for morphological examination and MPO assays. Administration of HP dramatically improved pancreatic damage and pancreatitis-associated lung damage and also reduced amylase and lipase activities in serum. Moreover, administration of HP reduced the production of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 in the pancreas and serum during AP. In addition, the administration of HP inhibited degradation of inhibitory κ-Bα (Iκ-Bα), NF-κB p65 translocation into nucleus and NF-κB binding activity in the pancreas. Our results suggest that HP exerted therapeutic effects on pancreatitis and these beneficial effects may be due to the inhibition of NF-κB activation.


Subject(s)
Ceruletide/pharmacology , Furans/pharmacology , Lignans/pharmacology , Nardostachys/chemistry , Pancreas/drug effects , Pancreatitis/chemically induced , Pancreatitis/drug therapy , Tumor Necrosis Factor-alpha/metabolism , Animals , Cytokines/metabolism , Female , Inflammation/drug therapy , Inflammation/metabolism , Lung/drug effects , Lung/metabolism , Mice , Mice, Inbred C57BL , Pancreas/metabolism , Pancreatitis/metabolism , Signal Transduction/drug effects
19.
Mol Med Rep ; 20(4): 3709-3718, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31485676

ABSTRACT

Chronic pancreatitis (CP) is characterized by recurrent pancreatic injury, resulting in inflammation and fibrosis. Currently, there are no drugs for the treatment of pancreatic fibrosis associated with CP. Piperine, a natural alkaloid found in black pepper, has been reported to show anti­inflammatory, anti­oxidative, and antitumor activities. Although piperine exhibits numerous properties in regards to the regulation of diverse diseases, the effects of piperine on CP have not been established. To investigate the effects of piperine on CP in vivo, we induced CP in mice through the repetitive administration of cerulein (50 µg/kg) six times at 1­h intervals, 5 times per week, for a total of 3 weeks. In the pre­treatment groups, piperine (1, 5, or 10 mg/kg) or corn oil were administrated orally at 1 h before the first cerulein injection, once a day, 5 times a week, for a total of 3 weeks. In the post­treatment groups, piperine (10 mg/kg) or corn oil was administered orally at 1 or 2 week after the first cerulein injection. Pancreases were collected for histological analysis. In addition, pancreatic stellate cells (PSCs) were isolated to examine the anti­fibrogenic effects and regulatory mechanisms of piperine. Piperine treatment significantly inhibited histological damage in the pancreas, increased the pancreatic acinar cell survival, reduced collagen deposition and reduced pro­inflammatory cytokines and chemokines. In addition, piperine treatment reduced the expression of fibrotic mediators, such as α­smooth muscle actin (α­SMA), collagen, and fibronectin 1 in the pancreas and PSCs. Moreover, piperine treatment reduced the production of transforming growth factor (TGF)­ß in the pancreas and PSCs. Furthermore, piperine treatment inhibited TGF­ß­induced pSMAD2/3 activation but not pSMAD1/5 in the PSCs. These findings suggest that piperine treatment ameliorates pancreatic fibrosis by inhibiting TGF­ß/SMAD2/3 signaling during CP.


Subject(s)
Alkaloids/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Benzodioxoles/therapeutic use , Pancreatitis, Chronic/drug therapy , Piperidines/therapeutic use , Polyunsaturated Alkamides/therapeutic use , Smad Proteins/immunology , Transforming Growth Factor beta/immunology , Animals , Disease Models, Animal , Female , Fibrosis , Mice , Mice, Inbred C57BL , Pancreas/drug effects , Pancreas/immunology , Pancreas/pathology , Pancreatitis, Chronic/immunology , Pancreatitis, Chronic/pathology , Signal Transduction/drug effects
20.
Int J Mol Med ; 44(4): 1563-1573, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31432106

ABSTRACT

Acute pancreatitis (AP) is an inflammatory disease of the pancreas. Icariin (ICA), a flavonoid glycoside, has been reported to have several pharmacological effects; however, the anti­inflammatory effects of ICA against AP require further study. Therefore, we aimed to investigate the effect of ICA on cerulein­induced AP. In the present study, AP was induced by intraperitoneally administering a supramaximal concentration of cerulein (50 µg/kg/h) for 6 h. ICA was also administered intraperitoneally, and mice were sacrificed 6 h after the final cerulein injection. Blood samples were collected to determine serum amylase and lipase levels. The pancreas and lung were rapidly removed for histological examination, and the analysis of myeloperoxidase activity. In addition, reverse transcription­quantitative polymerase chain reaction was conducted to analyze the expression of inflammatory cytokines in pancreatic tissues. Our results revealed that the administration of ICA prevented an increase in the pancreas weight/body weight ratio of mice and serum digestive enzyme levels. ICA treatment also inhibited cerulein­induced histological injury and neutrophil infiltration of the pancreas and lung. In addition, ICA suppressed the production of pro­inflammatory cytokines, including interleukin (IL)­1ß, IL­6 and tumor necrosis factor­α in the pancreas. Furthermore, ICA administration was observed to inhibit p38 activation during cerulein­induced AP. Inhibition of p38 activation resulted in alleviated pancreatitis. Collectively, our results suggested that ICA exhibits anti­inflammatory effects in cerulein­induced AP via the inhibition of p38.


Subject(s)
Ceruletide/adverse effects , Flavonoids/pharmacology , Pancreatitis/etiology , Pancreatitis/metabolism , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism , Amylases/blood , Animals , Biomarkers , Disease Models, Animal , Female , Lipase/blood , Lipase/metabolism , Mice , NF-kappa B/metabolism , Pancreatitis/diagnosis , Pancreatitis/drug therapy , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...