Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cranio ; 24(3): 207-12, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16933462

ABSTRACT

The aim was to test the hypothesis that inaudible vibrations with significant amounts of energy increasing during jaw movements can be recorded in the temporomandibular joint (TMJ) area. Twenty one subjects, who could perform wide opening movements without feeling discomfort, 12 with and 9 without TMJ sounds audible at conventional auscultation with a stethoscope, were included. Recordings were made during opening-closing, 2/s without tooth contact, and during mandibular rest, using accelerometers with a flat frequency response between the filter cutoff frequencies 0.1 Hz and 1000 Hz. The signals were digitized using a 24 bits card and sampled with the rate 96000 Hz. Power spectral analyses, and independent and paired samples t-tests were used in the analysis of the vibration power observed in frequency bands corresponding to audible and inaudible frequencies. An alpha-level of 5% was chosen for accepting a difference as being significant. In the group with audible sounds, about 47% of the total vibration energy was in the inaudible area below 20 Hz during opening-closing and about 76% during mandibular rest. In the group without audible sounds, the corresponding proportions were significantly different, 85% vs. 69%. The energy content of the vibrations, both those below and those above 20 Hz, increased significantly during jaw movement in both groups. Furthermore, percentage of signal energy above 20 Hz showed a noticeable increase in the group of subjects with audible sounds. This can physically be explained by decreased damping properties of damaged tissues surrounding the TMJ. Vibrations in the TMJ area can be observed with significant portions in the inaudible area below 20 Hz both during mandibular rest and during jaw movements whether or not the subjects have audible joint sounds. Further studies are needed to identify sources and evaluate possible diagnostic value.


Subject(s)
Temporomandibular Joint/physiology , Vibration , Adult , Auscultation , Female , Humans , Male , Mandible/physiology , Movement , Sound Spectrography , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL
...