Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Korean J Physiol Pharmacol ; 26(1): 25-36, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34965993

ABSTRACT

To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the wholecell mode patch-clamp technique. Application of CO delivered by carbon monoxidereleasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3- induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3's effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.

2.
Korean J Physiol Pharmacol ; 25(3): 227-237, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33859063

ABSTRACT

Carbon monoxide (CO) is a cardioprotectant and potential cardiovascular therapeutic agent. Human cardiac fibroblasts (HCFs) are important determinants of myocardial structure and function. Large-conductance Ca2+-activated K+ (BK) channel is a potential therapeutic target for cardiovascular disease. We investigated whether CO modulates BK channels and the signaling pathways in HCFs using whole-cell mode patch-clamp recordings. CO-releasing molecules (CORMs; CORM-2 and CORM-3) significantly increased the amplitudes of BK currents (IBK). The CO-induced stimulating effects on IBK were blocked by pre-treatment with specific nitric oxide synthase (NOS) blockers (L-NG-monomethyl arginine citrate and L-NG-nitroarginine methyl ester). 8-bromo-cyclic GMP increased IBK. KT5823 (inhibits PKG) or ODQ (inhibits soluble guanylate cyclase) blocked the CO-stimulating effect on IBK. Moreover, 8-bromo-cyclic AMP also increased IBK, and pre-treatment with KT5720 (inhibits PKA) or SQ22536 (inhibits adenylate cyclase) blocked the CO effect. Pre-treatment with Nethylmaleimide (a thiol-alkylating reagent) also blocked the CO effect on IBK, and DLdithiothreitol (a reducing agent) reversed the CO effect. These data suggest that CO activates IBK through NO via the NOS and through the PKG, PKA, and S-nitrosylation pathways.

3.
Molecules ; 25(6)2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32244969

ABSTRACT

Alnus sibirica extracts (ASex) have long been used in Oriental medicine to treat various conditions. To provide a scientific basis for this application and the underlying mechanism, we investigated the anti-inflammatory effects of ASex in vitro and in vivo. The in vitro model was established using human dermal fibroblasts (HDFs) treated with inflammatory stimulants (lipopolysaccharide, tumor necrosis factor-alpha, interferon-gamma). Lactate dehydrogenase and reverse transcription-polymerase chain reaction showed that ASex inhibited the increased expression of acute-phase inflammatory cytokines. The in vivo model was established by inducing skin inflammation in NC/Nga mice via the repeated application of house dust mite (HDM) ointment to the ears and back of the mice for eight weeks. HDM application increased the severity of skin lesions, eosinophil/mast cell infiltration, and serum immunoglobulin E levels, which were all significantly decreased by ASex treatment, demonstrating the same degree of protection as hydrocortisone. Overall, ASex showed excellent anti-inflammatory effects both in vitro and in vivo, suggesting its potential as an excellent candidate drug to reduce skin inflammation.


Subject(s)
Alnus/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Animals , Biopsy , Chromatography, High Pressure Liquid , Cytokines/blood , Cytokines/genetics , Cytokines/metabolism , Dermis/cytology , Dermis/drug effects , Dermis/metabolism , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Immunoglobulin E/blood , Inflammation Mediators/metabolism , Mice
4.
Clin Exp Pharmacol Physiol ; 47(1): 16-26, 2020 01.
Article in English | MEDLINE | ID: mdl-31519057

ABSTRACT

We characterised the voltage-gated Ca2+ channels (VGCCs) in human cardiac fibroblasts (HCFs) and myofibroblasts (HCMFs) and investigated the effects of nitric oxide (NO) on apoptosis and on these channels. Western blotting and immunofluorescence analyses show that α-smooth muscle actin (a myofibroblast marker) was markedly expressed in passage (P) 12-15 but not in P4 HCF cells, whereas calponin (a fibroblast marker) was expressed only in P4 cells. CaV 1.2 (L-type) and CaV 3.3 (T-type) of VGCCs were highly expressed in P12-15 cells, but only weak CaV 2.3 (R-type) expression was identified in P4 cells using reverse transcription-polymerase chain reaction analysis. S-Nitroso-N-acetylpenicillamine (SNAP, an NO donor) decreased cell viability of HCMFs in a dose-dependent manner and induced apoptotic changes, and nifedipine (an L-type Ca2+ channel blocker) prevented apoptosis as shown with immunofluorescence staining and flow cytometry. Whole-cell mode patch-clamp recordings demonstrate the presence of L-type Ca2+ (ICa,L ) and T-type Ca2+ (ICa,T ) currents in HCMFs. SNAP inhibited ICa,L of HCMFs, but pre-treatment with ODQ (a guanylate cyclase inhibitor) or KT5823 (a PKG inhibitor) prevented it. Pre-treating cells with KT5720 (a PKA inhibitor) or SQ22536 (an adenylate cyclase inhibitor) blocked SNAP-induced inhibition of ICa,L . 8-Bromo-cyclic GMP or 8-bromo-cyclic AMP also inhibited ICa,L . However, pre-treatment with N-ethylmaleimide (a thiol-alkylating reagent) did not block the SNAP effect, nor did DL-dithiothreitol (a reducing agent) reverse it. These data suggest that high concentrations of NO injure HCMFs and inhibit ICa,L through the PKG and PKA signalling pathways but not through the S-nitrosylation pathway.


Subject(s)
Apoptosis/physiology , Calcium Channels/metabolism , Myofibroblasts/metabolism , Nitric Oxide/metabolism , Apoptosis/drug effects , Carbazoles/pharmacology , Cells, Cultured , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Guanylate Cyclase/metabolism , Humans , Myofibroblasts/drug effects , Nitric Oxide Donors/metabolism , Pyrroles/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology
5.
Korean J Physiol Pharmacol ; 23(5): 367-379, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31496874

ABSTRACT

Although atopic dermatitis (AD) is known to be a representative skin disorder, it also affects the systemic immune response. In a recent study, myoblasts were shown to be involved in the immune regulation, but the roles of muscle cells in AD are poorly understood. We aimed to identify the relationship between mitochondria and atopy by genome-wide analysis of skeletal muscles in mice. We induced AD-like symptoms using house dust mite (HDM) extract in NC/Nga mice. The transcriptional profiles of the untreated group and HDM-induced AD-like group were analyzed and compared using microarray, differentially expressed gene and functional pathway analyses, and protein interaction network construction. Our microarray analysis demonstrated that immune response-, calcium handling-, and mitochondrial metabolism-related genes were differentially expressed. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology pathway analyses, immune response pathways involved in cytokine interaction, nuclear factor-kappa B, and T-cell receptor signaling, calcium handling pathways, and mitochondria metabolism pathways involved in the citrate cycle were significantly upregulated. In protein interaction network analysis, chemokine family-, muscle contraction process-, and immune response-related genes were identified as hub genes with many interactions. In addition, mitochondrial pathways involved in calcium signaling, cardiac muscle contraction, tricarboxylic acid cycle, oxidation-reduction process, and calcium-mediated signaling were significantly stimulated in KEGG and Gene Ontology analyses. Our results provide a comprehensive understanding of the genome-wide transcriptional changes of HDM-induced AD-like symptoms and the indicated genes that could be used as AD clinical biomarkers.

6.
Molecules ; 24(16)2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31398908

ABSTRACT

The effects of Alnus sibirica (AS) extracts on cytokine expression induced by inflammatory stimulants were examined in human dermal fibroblasts (HDFs) and RAW264.7 cells. The anti-oxidative effect and effect on cell viability of AS extracts were evaluated, and four extracts with the highest anti-oxidative effects were selected. HDFs and RAW264.7 cells were treated with inflammatory stimulants, and the expression of cytokines involved in acute (IL-6 and IL-10) and chronic (IL-18) inflammation, the initiation of the immune response (IL-33), and non-specific immune responses (IL-1ß, IL-8, and TNF-α) were determined using a reverse-transcription polymerase chain reaction. LPS increased the expression of all the cytokines, except for IL-18; however, AS extracts, particularly AS2 and AS4, reduced this increase, and TNF-α treatment markedly increased the expression of cytokines related to non-specific immune responses. IFN-γ treatment induced no significant changes, except for increased IL-33 expression in HDFs. AS extracts inhibited the increase in the expression of IL-33 and other cytokines in HDFs. Thus, the exposure of HDFs and RAW264.7 cells to inflammatory stimulants increased the expression of cytokines related to all the inflammatory processes. HDFs are involved not only in simple tissue regeneration but also in inflammatory reactions in the skin. AS2 and AS4 may offer effective therapy for related conditions.


Subject(s)
Alnus/chemistry , Cytokines/genetics , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Inflammation Mediators/metabolism , Plant Extracts/pharmacology , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Cell Survival/drug effects , Cytokines/metabolism , Humans , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Lipopolysaccharides , Mice , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
7.
Korean J Physiol Pharmacol ; 23(2): 141-150, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30820158

ABSTRACT

Despite increased evidence of bio-activity following far-infrared (FIR) radiation, susceptibility of cell signaling to FIR radiation-induced homeostasis is poorly understood. To observe the effects of FIR radiation, FIR-radiated materials-coated fabric was put on experimental rats or applied to L6 cells, and microarray analysis, quantitative real-time polymerase chain reaction, and wound healing assays were performed. Microarray analysis revealed that messenger RNA expressions of rat muscle were stimulated by FIR radiation in a dose-dependent manner in amount of 10% and 30% materials-coated. In 30% group, 1,473 differentially expressed genes were identified (fold change [FC] > 1.5), and 218 genes were significantly regulated (FC > 1.5 and p < 0.05). Microarray analysis showed that extracellular matrix (ECM)-receptor interaction, focal adhesion, and cell migration-related pathways were significantly stimulated in rat muscle. ECM and platelet-derived growth factor (PDGF)-mediated cell migration-related genes were increased. And, results showed that the relative gene expression of actin beta was increased. FIR radiation also stimulated actin subunit and actin-related genes. We observed that wound healing was certainly promoted by FIR radiation over 48 h in L6 cells. Therefore, we suggest that FIR radiation can penetrate the body and stimulate PDGF-mediated cell migration through ECM-integrin signaling in rats.

8.
Korean J Physiol Pharmacol ; 23(2): 151-159, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30820159

ABSTRACT

Pruritus (itching) is classically defined as an unpleasant cutaneous sensation that leads to scratching behavior. Although the scientific criteria of classification for pruritic diseases are not clear, it can be divided as acute or chronic by duration of symptoms. In this study, we investigated whether skin injury caused by chemical (contact hypersensitivity, CHS) or physical (skin-scratching stimulation, SSS) stimuli causes initial pruritus and analyzed gene expression profiles systemically to determine how changes in skin gene expression in the affected area are related to itching. In both CHS and SSS, we ranked the Gene Ontology Biological Process terms that are generally associated with changes. The factors associated with upregulation were keratinization, inflammatory response and neutrophil chemotaxis. The Kyoto Encyclopedia of Genes and Genomes pathway shows the difference of immune system, cell growth and death, signaling molecules and interactions, and signal transduction pathways. Il1a , Il1b and Il22 were upregulated in the CHS, and Tnf, Tnfrsf1b, Il1b, Il1r1 and Il6 were upregulated in the SSS. Trpc1 channel genes were observed in representative itching-related candidate genes. By comparing and analyzing RNA-sequencing data obtained from the skin tissue of each animal model in these characteristic stages, it is possible to find useful diagnostic markers for the treatment of itching, to diagnose itching causes and to apply customized treatment.

9.
Int J Mol Sci ; 19(3)2018 Mar 12.
Article in English | MEDLINE | ID: mdl-29534509

ABSTRACT

This study investigated the expression of voltage-gated K⁺ (KV) channels in human cardiac fibroblasts (HCFs), and the effect of nitric oxide (NO) on the KV currents, and the underlying phosphorylation mechanisms. In reverse transcription polymerase chain reaction, two types of KV channels were detected in HCFs: delayed rectifier K⁺ channel and transient outward K⁺ channel. In whole-cell patch-clamp technique, delayed rectifier K⁺ current (IK) exhibited fast activation and slow inactivation, while transient outward K⁺ current (Ito) showed fast activation and inactivation kinetics. Both currents were blocked by 4-aminopyridine. An NO donor, S-nitroso-N-acetylpenicillamine (SNAP), increased the amplitude of IK in a concentration-dependent manner with an EC50 value of 26.4 µM, but did not affect Ito. The stimulating effect of SNAP on IK was blocked by pretreatment with 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or by KT5823. 8-bromo-cyclic GMP stimulated the IK. The stimulating effect of SNAP on IK was also blocked by pretreatment with KT5720 or by SQ22536. Forskolin and 8-bromo-cyclic AMP each stimulated IK. On the other hand, the stimulating effect of SNAP on IK was not blocked by pretreatment of N-ethylmaleimide or by DL-dithiothreitol. Our data suggest that NO enhances IK, but not Ito, among KV currents of HCFs, and the stimulating effect of NO on IK is through the PKG and PKA pathways, not through S-nitrosylation.


Subject(s)
Myofibroblasts/metabolism , Nitric Oxide/metabolism , Potassium Channels, Voltage-Gated/metabolism , Action Potentials , Adenine/analogs & derivatives , Adenine/pharmacology , Carbazoles/pharmacology , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic GMP-Dependent Protein Kinases/metabolism , Enzyme Inhibitors/pharmacology , Humans , Myofibroblasts/drug effects , Myofibroblasts/physiology , Oxadiazoles/pharmacology , Pyrroles/pharmacology , Quinoxalines/pharmacology , S-Nitroso-N-Acetylpenicillamine/pharmacology
10.
Clin Exp Pharmacol Physiol ; 44(11): 1116-1124, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28731589

ABSTRACT

The human cardiac fibroblast (HCF) is the most abundant cell type in the myocardium, and HCFs play critical roles in maintaining normal cardiac function. However, unlike cardiomyocytes, the electrophysiology of HCFs is not well established. In the cardiovascular system, Ca2+ -activated K+ (KCa) channels have distinct physiological and pathological functions, and nitric oxide (NO) plays a key role. In this study, we investigated the potential effects of NO on KCa channels in HCFs. We recorded strong oscillating, well-maintained outward K+ currents without marked inactivation throughout the test pulse period and detected outward rectification in the I-V curve; these are all characteristics that are typical of KCa currents. These currents were blocked with iberiotoxin (IBTX, a BKCa blocker) but not with TRAM-34 (an IKCa blocker). The amplitudes of the currents were increased with SNAP (an NO donor), and these increases were inhibited with IBTX. The SNAP-stimulating effect on the BKCa currents was blocked by pretreatment with KT5823 (a protein kinase G [PKG] inhibitor) or 1 H-[1,-2, -4] oxadiazolo-[4,-3-a] quinoxalin-1-one (ODQ; a soluble guanylate cyclase inhibitor). Additionally, 8-bromo-cyclic guanosine 3',5'-monophosphate (8-Br-cGMP) stimulated the BKCa currents, and pretreatment with KT5720 (a protein kinase A [PKA] inhibitor) and SQ22536 (an adenylyl cyclase inhibitor) blocked the NO-stimulating effect on the BKCa currents. Furthermore, 8-bromo-cyclic adenosine 3',5'-monophosphate (8-Br-cAMP) activated the BKCa currents. These data suggest that BKCa current is the main subtype of the KCa current in HCFs and that NO enhances these currents through the PKG and PKA pathways.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Fibroblasts/drug effects , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Myocardium/cytology , Nitric Oxide/pharmacology , Potassium/metabolism , Electrophysiological Phenomena/drug effects , Enzyme Activation/drug effects , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Signal Transduction/drug effects
11.
Korean J Physiol Pharmacol ; 20(3): 315-24, 2016 May.
Article in English | MEDLINE | ID: mdl-27162486

ABSTRACT

Human cardiac fibroblasts (HCFs) have various voltage-dependent K(+) channels (VDKCs) that can induce apoptosis. Hydrogen peroxide (H2O2) modulates VDKCs and induces oxidative stress, which is the main contributor to cardiac injury and cardiac remodeling. We investigated whether H2O2 could modulate VDKCs in HCFs and induce cell injury through this process. In whole-cell mode patch-clamp recordings, application of H2O2 stimulated Ca(2+)-activated K(+) (KCa) currents but not delayed rectifier K(+) or transient outward K(+) currents, all of which are VDKCs. H2O2-stimulated KCa currents were blocked by iberiotoxin (IbTX, a large conductance KCa blocker). The H2O2-stimulating effect on large-conductance KCa (BKCa) currents was also blocked by KT5823 (a protein kinase G inhibitor) and 1 H-[1, 2, 4] oxadiazolo-[4, 3-a] quinoxalin-1-one (ODQ, a soluble guanylate cyclase inhibitor). In addition, 8-bromo-cyclic guanosine 3', 5'-monophosphate (8-Br-cGMP) stimulated BKCa currents. In contrast, KT5720 and H-89 (protein kinase A inhibitors) did not block the H2O2-stimulating effect on BKCa currents. Using RT-PCR and western blot analysis, three subtypes of KCa channels were detected in HCFs: BKCa channels, small-conductance KCa (SKCa) channels, and intermediate-conductance KCa (IKCa) channels. In the annexin V/propidium iodide assay, apoptotic changes in HCFs increased in response to H2O2, but IbTX decreased H2O2-induced apoptosis. These data suggest that among the VDKCs of HCFs, H2O2 only enhances BKCa currents through the protein kinase G pathway but not the protein kinase A pathway, and is involved in cell injury through BKCa channels.

12.
J Diabetes Res ; 2015: 497431, 2015.
Article in English | MEDLINE | ID: mdl-26060824

ABSTRACT

Euglycemia is the ultimate goal in diabetes care to prevent complications. However, the benefits of euglycemia in type 2 diabetes are controversial because near-euglycemic subjects show higher mortality than moderately hyperglycemic subjects. We previously reported that euglycemic-diabetic rats on calorie-control lose a critical liver weight (LW) compared with hyperglycemic rats. Here, we elucidated the molecular mechanisms underlying the loss of LW in euglycemic-diabetic rats and identified a potential risk in achieving euglycemia by calorie-control. Sprague-Dawley diabetic rats generated by subtotal-pancreatectomy were fed a calorie-controlled diet for 7 weeks to achieve euglycemia using 19 kcal% (19R) or 6 kcal% (6R) protein-containing chow or fed ad libitum (19AL). The diet in both R groups was isocaloric/kg body weight to the sham-operated group (19S). Compared with 19S and hyperglycemic 19AL, both euglycemic R groups showed lower LWs, increased autophagy, and increased AMPK and caspase-3 and decreased mTOR activities. Though degree of insulin deficiency was similar among the diabetic rats, Akt activity was lower, and PTEN activity was higher in both R groups than in 19AL whose signaling patterns were similar to 19S. In conclusion, euglycemia achieved by calorie-control is deleterious in insulin deficiency due to increased autophagy and apoptosis in the liver via AMPK and caspase-3 activation.


Subject(s)
Adenylate Kinase/metabolism , Apoptosis/physiology , Autophagy/physiology , Blood Glucose/metabolism , Caspase 3/metabolism , Diabetes Mellitus, Experimental/metabolism , Liver/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Diabetes Mellitus, Experimental/pathology , Liver/pathology , Male , Organ Size , Phosphorylation , Rats , Rats, Sprague-Dawley , Signal Transduction
13.
Korean J Physiol Pharmacol ; 19(3): 283-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25954135

ABSTRACT

This study surveys the improvement characteristics in old-aged muscular mitochondria by bio-active materials coated fabric (BMCF). To observe the effects, the fabric (10 and 30%) was worn to old-aged rat then the oxygen consumption efficiency and copy numbers of mitochondria, and mRNA expression of apoptosis- and mitophagy-related genes were verified. By wearing the BMCF, the oxidative respiration significantly increased when using the 30% materials coated fabric. The mitochondrial DNA copy number significantly decreased and subsequently recovered in a dose-dependent manner. The respiratory control ratio to mitochondrial DNA copy number showed a dose-dependent increment. As times passed, Bax, caspase 9, PGC-1α and ß-actin increased, and Bcl-2 decreased in a dose-dependent manner. However, the BMCF can be seen to have had no effect on Fas receptor. PINK1 expression did not change considerably and was inclined to decrease in control group, but the expression was down-regulated then subsequently increased with the use of the BMCF in a dose-dependent manner. Caspase 3 increased and subsequently decreased in a dose-dependent manner. These results suggest that the BMCF invigorates mitophagy and improves mitochondrial oxidative respiration in skeletal muscle, and in early stage of apoptosis induced by the BMCF is not related to extrinsic death-receptor mediated but mitochondria-mediated signaling pathway.

14.
Chin J Physiol ; 57(3): 137-51, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24826782

ABSTRACT

Nitric oxide (NO) is produced by nitric oxide synthase (NOS) in dermal fibroblasts and is important during wound healing. Intermediate conductance Ca²âº-activated K+ (IK; IK1; KCa3.1; IKCa; SK4; KCNN4) channels contribute to NOS upregulation, NO production, and various NO-mediated essential functions in many kinds of cells. To determine if the action of NO is linked to IK channel regulation in human dermal fibroblasts, we investigated the expression of IK channels in the cells and the effects and mechanisms of NO on the channels using RT-PCR, western blot analysis, immunocytochemistry and whole-cell and single-channel patch-clamp techniques. The presence of functional IK channels at the RNA, protein and membrane levels was demonstrated and S-nitroso-N-acetylpenicillamine (SNAP) was shown to significantly increase IK currents. The effects of NO were abolished by pretreatment with KT5823 or 1H-[1,2,4]-oxadiazolo [4,3-a]quinoxalin-1-one (ODQ) but not with KT5720. In addition, IK currents were increased by protein kinase G1α or 8-bromo-cGMP but not by forskolin, 8-bromo-cAMP, or catalytic subunits of protein kinase A (PKAcs). On the other hand, PKAcs with cGMP did not increase IK currents, and pretreatment with KT5720 did not block the stimulating effects of 8-Br-cGMP on the IK channels. These data suggest that NO activates IK channels through the PKG but not the PKA pathways, and it seems there is no cross activation between PKG and PKA pathways in human dermal fibroblasts.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Fibroblasts/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Nitric Oxide/pharmacology , Wound Healing/physiology , 4-Aminopyridine/pharmacology , Calcium/metabolism , Cells, Cultured , Colforsin/pharmacology , Cyclic GMP/analogs & derivatives , Cyclic GMP/pharmacology , Dermis/cytology , Dermis/physiology , Enzyme Inhibitors/pharmacology , Fibroblasts/cytology , Humans , Intermediate-Conductance Calcium-Activated Potassium Channels/agonists , Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Nitric Oxide/metabolism , Oxadiazoles/pharmacology , Patch-Clamp Techniques , Peptides/pharmacology , Potassium Channel Blockers/pharmacology , Quinoxalines/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Toxins, Biological/pharmacology
15.
Korean J Physiol Pharmacol ; 17(1): 37-42, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23440017

ABSTRACT

Taxifolin glycoside is a new drug candidate for the treatment of atopic dermatitis (AD). Many drugs cause side effects such as long QT syndrome by blocking the human ether-a-go-go related gene (hERG) K(+) channels. To determine whether taxifolin glycoside would block hERG K(+) channels, we recorded hERG K(+) currents using a whole-cell patch clamp technique. We found that taxifolin glycoside directly blocked hERG K(+) current in a concentration-dependent manner (EC(50)=9.6±0.7 µM). The activation curve of hERG K(+) channels was negatively shifted by taxifolin glycoside. In addition, taxifolin glycoside accelerated the activation time constant and reduced the onset of the inactivation time constant. These results suggest that taxifolin glycoside blocks hERG K(+) channels that function by facilitating activation and inactivation process.

16.
Biol Pharm Bull ; 34(12): 1815-22, 2011.
Article in English | MEDLINE | ID: mdl-22130236

ABSTRACT

The aim of the present study was to investigate whether hirsutenone affects the human ether-a-go-go related gene (hERG) K(+) channels. Many drugs promote formation of the acquired form of long QT syndrome (LQTS) by blocking the hERG K(+) channels. Hirsutenone, a new candidate for the treatment inflammatory skin lesions, induced a concentration-dependent decrease in hERG K(+) current amplitudes. Hirsutenone significantly decreased the time constants at the onset of inactivation. However, the reductions in the time constants of steady-state inactivation and the recovery from inactivation after hirsutenone treatment were not significant. In addition, the drug had no effect on the voltage-dependent activation curve or the steady-state inactivation curve. In summary, hirsutenone potentially acts as a blocker of hERG K(+) channels functioning by modifying the channel inactivation kinetics.


Subject(s)
Catechols/pharmacology , Diarylheptanoids/pharmacology , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Potassium Channel Blockers/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , CHO Cells , Cricetinae , Cricetulus , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/physiology , Humans , Membrane Potentials/drug effects , Patch-Clamp Techniques , Protein Kinase Inhibitors/pharmacology , Protein Transport/drug effects , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...