Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 117(28): 8571-8, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23795702

ABSTRACT

We investigate the dynamics and the mechanism of flame retardants in polycarbonate matrixes to explore for a way of designing efficient and environment-friendly flame retardants. The high phosphorus content of organic phosphates has been considered as a requirement for efficient flame retardants. We show, however, that one can enhance the efficiency of flame retardants even with a relatively low phosphorus content by tuning the dynamics and the intermolecular interactions of flame retardants. This would enable one to design bulkier flame retardants that should be less volatile and less harmful in indoor environments. UL94 flammability tests indicate that even though the phosphorus content of 2,4-di-tert-butylphenyl diphenyl phosphate (DDP) is much smaller with two bulky tertiary butyl groups than that of triphenyl phosphate (TPP), DDP should be as efficient of a flame retardant as TPP, which is a widely used flame retardant. On the other hand, the 2-tert-butylphenyl diphenyl phosphate (2-tBuDP), with a lower phosphorus content than TPP but with a greater phosphorus content than DDP, is less efficient as a flame retardant than both DDP and TPP. Dynamic secondary ion mass spectrometry and molecular dynamics simulations reveal that the diffusion of DDP is slower by an order of magnitude at low temperature than that of TPP but becomes comparable to that of TPP at the ignition temperature. This implies that DDP should be much less volatile than TPP at low temperature, which is confirmed by thermogravimetric analysis. We also find from Fourier transform infrared spectroscopy that Fries rearrangement and char formation are suppressed more by DDP than by TPP. The low volatility and the suppressed char formation of DDP suggest that the enhanced flame retardancy of DDP should be attributed to its slow diffusivity at room temperature and yet sufficiently high diffusivity at high temperature.

2.
J Org Chem ; 73(14): 5520-8, 2008 Jul 18.
Article in English | MEDLINE | ID: mdl-18557650

ABSTRACT

Combined analyses of experimental and computational studies on the Cu-catalyzed three-component reactions of sulfonyl azides, terminal alkynes and amines, alcohols, or water are described. A range of experimental data including product distribution ratio and trapping of key intermediates support the validity of a common pathway in the reaction of 1-alkynes and two distinct types of azides substituted with sulfonyl and aryl(alkyl) groups. The proposal that bimolecular cycloaddition reactions take place initially between triple bonds and sulfonyl azides to give N-sulfonyl triazolyl copper intermediates was verified by a trapping experiment. The main reason for the different outcome from reactions between sulfonyl and aryl(alkyl) azides is attributed to the lability of the N-sulfonyl triazolyl copper intermediates. These species are readily rearranged to another key intermediate, ketenimine, into which various nucleophiles such as amines, alcohols, or water add to afford the three-component coupled products: amidines, imidates, or amides, respectively. In addition, the proposed mechanistic framework is in good agreement with the obtained kinetics and competition studies. A computational study (B3LYP/LACV3P*+) was also performed confirming the proposed mechanistic pathway that the triazolyl copper intermediate plays as a branching point to dictate the product distribution.


Subject(s)
Alcohols/chemistry , Alkynes/chemistry , Amines/chemistry , Azides/chemistry , Copper/chemistry , Sulfur Compounds/chemistry , Water/chemistry , Catalysis , Ethylenes/chemistry , Imidoesters/chemistry , Isomerism , Ketones/chemistry , Kinetics , Models, Molecular , Molecular Structure , Temperature , Triazoles/chemistry
4.
Org Lett ; 8(7): 1347-50, 2006 Mar 30.
Article in English | MEDLINE | ID: mdl-16562888

ABSTRACT

[reaction: see text] It is shown that N-sulfonylimidates can be efficiently prepared by a three-component coupling of terminal alkynes, sulfonyl azides, and alcohols with use of a copper catalyst and an amine base. The reaction is characterized by mild conditions, high selectivity, and tolerance with various functional groups. Facile transformation of imidates to amidines was also achieved by sodium cyanide. Additionally, a protocol for the extremely efficient Pd-catalyzed [3,3]-sigmatropic rearrangement of allylic sulfonimidates to N-allylic sulfonamides has been developed.

5.
J Am Chem Soc ; 127(46): 16046-7, 2005 Nov 23.
Article in English | MEDLINE | ID: mdl-16287290

ABSTRACT

It is shown for the first time that N-sulfonyl amides can be efficiently prepared by an unconventional approach of the hydrative reaction between terminal alkynes, sulfonyl azides, and water in the presence of copper catalyst and amine base under very mild conditions. The present route is quite general, and a wide range of alkynes and sulfonyl azides are readily coupled catalytically with water to furnish amides in high yields. A variety of labile functional groups are tolerated under the conditions, and the reaction is regioselective in that only terminal alkynes react while double or internal triple bonds are intact. The reaction can be readily scaled up and is also adaptable to a solid-phase procedure with high efficiency.

6.
J Am Chem Soc ; 127(7): 2038-9, 2005 Feb 23.
Article in English | MEDLINE | ID: mdl-15713069

ABSTRACT

A highly efficient, mild, practical, and catalytic multicomponent reaction for the synthesis of N-sulfonylamidines has been developed. This reaction has an extremely wide scope with regard to all three coupling components of alkyne, sulfonyl azide, and amine. Two plausible mechanistic pathways involving ketenimine or triazole intermediate are tentatively presented for the copper-catalyzed three-component coupling reactions.


Subject(s)
Alkynes/chemistry , Amidines/chemical synthesis , Amines/chemistry , Azides/chemistry , Sulfinic Acids/chemical synthesis , Amidines/chemistry , Sulfinic Acids/chemistry
7.
Org Lett ; 6(22): 4109-12, 2004 Oct 28.
Article in English | MEDLINE | ID: mdl-15496111

ABSTRACT

[reaction: see text] We have developed, on the basis of a chelation-strategy, an efficient copper-catalyzed aziridination protocol with the use of 5-methyl-2-pyridinesulfonamide and PhI(OAc)(2). The reaction proceeds smoothly under mild conditions to give aziridines in moderate to good yields in the absence of external ligands or bases. The coordination-assisted approach offers the additional benefits that efficient deprotection of the N-substituent and selective aziridine ring-opening are effectively achieved.

8.
J Am Chem Soc ; 125(36): 10926-40, 2003 Sep 10.
Article in English | MEDLINE | ID: mdl-12952474

ABSTRACT

A variety of metalated tosylhydrazone salts derived from benzaldehyde have been prepared and were reacted with benzaldehyde in the presence of tetrahydrothiophene (THT) (20 mol %) and Rh(2)(OAc)(4) (1 mol %) to give stilbene oxide. Of the lithium, sodium, and potassium salts tested, the sodium salt was found to give the highest yield and selectivity. This study was extended to a wide variety of aromatic, heteroaromatic, aliphatic, alpha,beta-unsaturated, and acetylenic aldehydes and to ketones. On the whole, high yields of epoxides with moderate to very high diastereoselectivities were observed. A broad range of tosylhydrazone salts derived from aromatic, heteroaromatic, and alpha,beta-unsaturated aldehydes was also examined using the same protocol in reactions with benzaldehyde, and again, good yields and high diastereoselectivities were observed in most cases. Thus, a general process for the in situ generation of diazo compounds from tosylhydrazone sodium salts has been established and applied in sulfur-ylide mediated epoxidation reactions. The chiral, camphor-derived, [2.2.1] bicyclic sulfide 7 was employed (at 5-20 mol % loading) to render the above processes asymmetric with a range of carbonyl compounds and tosylhydrazone sodium salts. Benzaldehyde tosylhydrazone sodium salt gave enantioselectivities of 91 +/- 3% ee and high levels of diastereoselectivity with a range of aldehydes. However, tosylhydrazone salts derived from a range of carbonyl compounds gave more variable selectivities. Although those salts derived from electron-rich or neutral aldehydes gave high enantioselectivities, those derived from electron-deficient or hindered aromatic aldehydes gave somewhat reduced enantioselectivities. Using alpha,beta-unsaturated hydrazones, chiral sulfide 7 gave epoxides with high diastereoselectivities, but only moderate yields were achieved (12-56%) with varying degrees of enantioselectivity. A study of solvent effects showed that, while the impact on enantioselectivity was small, the efficiency of diazo compound generation was influenced, and CH(3)CN and 1,4-dioxane emerged as the optimum solvents. A general rationalization of the factors that influence both relative and absolute stereochemistry for all of the different substrates is provided. Reversibility in formation of the betaine intermediate is an important issue in the control of diastereoselectivity. Hence, where low diastereocontrol was observed, the results have been rationalized in terms of the factors that contribute to the reduced reversion of the syn betaine back to the original starting materials. The enantioselectivity is governed by ylide conformation, facial selectivity in the ylide reaction, and, again, the degree of reversibility in betaine formation. From experimental evidence and calculations, it has been shown that sulfide 7 gives almost complete control of facial selectivity, and, hence, it is the ylide conformation and degree of reversibility that are responsible for the enantioselectivity observed. A simple test has been developed to ascertain whether the reduced enantioselectivity observed in particular cases is due to poor control in ylide conformation or due to partial reversibility in the formation of the betaine.

SELECTION OF CITATIONS
SEARCH DETAIL
...