Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 294
Filter
1.
Tissue Eng Regen Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955905

ABSTRACT

BACKGROUND: This study aimed to identify glycine analogs conducive to the formation of cell-absorbable nanocomplexes, enhancing collagen synthesis and subsequent osteogenesis in combination with BMP2 for improved bone regeneration. METHODS: Glycine and its derivatives were assessed for their effects on osteogenic differentiation in MC3T3-E1 cells and human bone marrow mesenchymal stem cells (BMSCs) under osteogenic conditions or with BMP2. Osteogenic differentiation was assessed through alkaline phosphatase staining and real-time quantitative polymerase chain reaction (RT-qPCR). Nanocomplex formation was examined via scanning electron microscopy, circular dichroism, and ultraviolet-visible spectroscopy. In vivo osteogenic effects were validated using a mouse calvarial defect model, and bone regeneration was evaluated through micro-computed tomography and histomorphometric analysis. RESULTS: Glycine, glycine methyl ester, and glycinamide significantly enhanced collagen synthesis and ALP activity in conjunction with an osteogenic medium (OSM). GA emerged as the most effective inducer of osteoblast differentiation marker genes. Combining GA with BMP2 synergistically stimulated ALP activity and the expression of osteoblast markers in both cell lines. GA readily formed nanocomplexes, facilitating cellular uptake through strong electrostatic interactions. In an in vivo calvarial defect mouse model, the GA and BMP2 combination demonstrated enhanced bone volume, bone volume/tissue volume ratio, trabecular numbers, and mature bone formation compared to other combinations. CONCLUSION: GA and BMP2 synergistically promoted in vitro osteoblast differentiation and in vivo bone regeneration through nanocomplex formation. This combination holds therapeutic promise for individuals with bone defects, showcasing its potential for clinical intervention.

2.
Biomol Ther (Seoul) ; 32(4): 467-473, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38844804

ABSTRACT

In this study, we investigated the potential protective effects of (+)-afzelechin (AZC), a natural compound that is derived from Bergenia ligulata, on lipopolysaccharide (LPS)-induced inflammatory responses. AZC is known to have antioxidant, anticancer, antimicrobial, and cardiovascular protective properties. However, knowledge regarding the therapeutic potential of AZC against LPS-induced inflammatory responses is limited. Thus, we investigated the protective attributes of AZC against inflammatory damage caused by LPS exposure. We examined the effects of AZC on heme oxygenase (HO)-1, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) in LPS-activated human umbilical vein endothelial cells (HUVECs). In addition, the effects of AZC on the expression of iNOS, tumor necrosis factor (TNF)-α, and interleukin (IL)-1ß were analyzed in the lung tissues of LPS-injected mice. Data revealed that AZC promoted the production of HO-1, inhibited the interaction between luciferase and nuclear factor (NF)-κB, and reduced the levels of COX-2/PGE2 and iNOS/NO, thereby leading to a decrease in the signal transducer and activator of transcription (STAT)-1 phosphorylation. Moreover, AZC facilitated the nuclear translocation of Nrf2, increased the binding activity between Nrf2 and the antioxidant response elements (AREs), and lowered the expression of IL-1ß in the LPS-treated HUVECs. In the animal model, AZC significantly reduced the expression of iNOS in the lung tissue structure and the TNF-α level in the bronchoalveolar lavage fluid. These findings demonstrate that AZC possesses anti-inflammatory properties that regulate iNOS through the inhibition of both NF-κB expression and p-STAT-1. Consequently, AZC has potential as a future candidate for the development of new clinical substances for the treatment of pathological inflammation.

3.
ACS Pharmacol Transl Sci ; 7(4): 1023-1031, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38633588

ABSTRACT

The unique structure and beneficial biological properties of marine natural products have drawn interest in drug development. Here, we examined the therapeutic potential of napyradiomycin B4 isolated from marine-derived Streptomyces species for osteoclast-related skeletal diseases. Bone marrow-derived macrophages were treated with napyradiomycin B4 in an osteoclast-inducing medium, and osteoclast formation, osteoclast-specific gene expression, and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) localization were evaluated using tartrate-resistant acid phosphatase staining, real-time PCR, and immunostaining, respectively. Phosphorylation levels of signaling proteins were assessed by immunoblot analysis to understand the molecular action of napyradiomycin B4. The in vivo efficacy of napyradiomycin B4 was examined under experimental periodontitis, and alveolar bone destruction was evaluated by microcomputed tomography (micro-CT) and histological analyses. Among the eight napyradiomycin derivatives screened, napyradiomycin B4 considerably inhibited osteoclastogenesis. Napyradiomycin B4 significantly suppressed the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation and disrupted the expression of NFATc1 and its target genes. Mitogen-activated extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase (ERK) phosphorylation levels were reduced by napyradiomycin B4 in response to RANKL. Under in vivo experimental periodontitis, napyradiomycin B4 significantly attenuated osteoclast formation and decreased the distance between the cementoenamel junction and alveolar bone crest. Our findings demonstrate the antiosteoclastogenic activity of napyradiomycin B4 by inhibiting the RANKL-induced MEK-ERK signaling pathway and its protective effect on alveolar bone destruction.

4.
Int J Mol Sci ; 25(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474222

ABSTRACT

High mobility group box 1 (HMGB1), a protein with important functions, has been recognized as a potential therapeutic target for the treatment of sepsis. One possible mechanism for this is that inhibiting HMGB1 secretion can exert antiseptic effects, which can restore the integrity of the vascular barrier. (7S)-(+)-cyclopentyl carbamic acid 8,8-dimethyl-2-oxo-6,7-dihydro-2H,8H-pyrano[3,2-g]chromen-7-yl-ester (CGK012) is a newly synthesized pyranocoumarin compound that could function as a novel small-molecule inhibitor of the Wnt/ß-catenin signaling pathway. However, no studies have yet determined the effects of CGK012 on sepsis. We investigated the potential of CGK012 to attenuate the excessive permeability induced by HMGB1 and enhance survival rates in a mouse model of sepsis with reduced HMGB1 levels following lipopolysaccharide (LPS) treatment. In both LPS-stimulated human endothelial cells and a mouse model exhibiting septic symptoms due to cecal ligation and puncture (CLP), we assessed proinflammatory protein levels and tissue damage biomarkers as indicators of reduced vascular permeability. CGK012 was applied after induction in human endothelial cells exposed to LPS and the CLP-induced mouse model of sepsis. CGK012 effectively mitigated excessive permeability and suppressed HMGB1 release, resulting in improved vascular stability, decreased mortality, and enhanced histological conditions in the mouse model of CLP-induced sepsis. In conclusion, our findings indicate that CGK012 treatment in mice with CLP-induced sepsis diminished HMGB1 release and increased the survival rate, suggesting its potential as a pharmaceutical intervention for sepsis.


Subject(s)
Anti-Infective Agents, Local , Carbamates , Coumarins , HMGB1 Protein , Sepsis , Animals , Humans , Mice , Anti-Infective Agents, Local/pharmacology , Anti-Infective Agents, Local/therapeutic use , Disease Models, Animal , HMGB1 Protein/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Sepsis/metabolism
5.
Toxicon ; 241: 107650, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360299

ABSTRACT

Particulate matter (PM) comprises a hazardous mixture of inorganic and organic particles that carry health risks. Inhaling fine PM particles with a diameter of ≤2.5 µm (PM2.5) can promote significant lung damage. Hederacolchiside A1 (HA1) exhibits notable in vivo antitumor effects against various solid tumors. However, our understanding of its therapeutic potential for individuals with PM2.5-induced lung injuries remains limited. Here, we explored the protective properties of HA1 against lung damage caused by PM2.5 exposure. HA1 was administered to the mice 30 min after intratracheal tail vein injection of PM2.5. Various parameters, such as changes in lung tissue wet/dry (W/D) weight ratio, total protein/total cell ratio, lymphocyte counts, inflammatory cytokine levels in bronchoalveolar lavage fluid (BALF), vascular permeability, and histology, were assessed in mice exposed to PM2.5. Our data showed that HA1 mitigated lung damage, reduced the W/D weight ratio, and suppressed hyperpermeability caused by PM2.5 exposure. Moreover, HA1 effectively decreased plasma levels of inflammatory cytokines in those exposed to PM2.5, including tumor necrosis factor-α, interleukin-1ß, and nitric oxide, while also lowering the total protein concentration in BALF and successfully alleviating PM2.5-induced lymphocytosis. Furthermore, HA1 significantly decreased the expression levels of toll-like receptor 4 (TLR4), myeloid differentiation primary response (MyD) 88, and autophagy-related proteins LC3 II and Beclin 1 but increased the protein phosphorylation of the mammalian target of rapamycin (mTOR). The anti-inflammatory characteristics of HA1 highlights its potential as a promising therapeutic agent for mitigating PM2.5-induced lung injuries by modulating the TLR4-MyD88 and mTOR-autophagy pathways.


Subject(s)
Lung Injury , Mice , Animals , Lung Injury/chemically induced , Lung Injury/drug therapy , Particulate Matter/toxicity , Particulate Matter/metabolism , Toll-Like Receptor 4/metabolism , Lung , TOR Serine-Threonine Kinases/toxicity , TOR Serine-Threonine Kinases/metabolism , Cytokines/metabolism , Mammals/metabolism
6.
J Med Food ; 27(1): 12-21, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38236692

ABSTRACT

Sepsis-induced acute lung injury (ALI) poses a common and formidable challenge in clinical practice, currently lacking efficacious therapeutic approaches. This study delves into the evaluation of (+)-afzelechin (AZC), a natural compound derived from Bergenia ligulata with a diverse array of properties, encompassing antioxidant, anticancer, antimicrobial, and cardiovascular effects to ascertain its effectiveness and underlying mechanisms in mitigating sepsis-induced ALI through animal experimentation. An ALI mouse model induced by sepsis was established through lipopolysaccharide (LPS) administration, and various analytical techniques, including quantitative real-time polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay were employed to gauge inflammatory cytokine levels, lung injury, and associated signaling pathways. The animal experiments revealed that AZC offered safeguards against lung injury induced by LPS while reducing inflammatory cytokine levels in both blood serum and lung tissue. Western blotting experiments revealed AZC's downregulation of the toll-like receptor (TLR)4/NF-κB pathway and the upregulation of PI3K/Akt, coupled with inhibition of the Hippo and Rho signaling pathways. These findings underscore AZC's efficacy in ameliorating sepsis-induced ALI by modulating cytokine storms and curtailing inflammation via the regulation of TLR4/NF-κB, PI3K/Akt, Hippo, and Rho signaling pathways. This work serves as a foundation for additional exploration into AZC's mechanisms and its potential as a therapy for sepsis-induced ALI. Animals in accordance with Kyungpook National University (IRB No. KNU 2022-174).


Subject(s)
Acute Lung Injury , Flavonoids , Phenols , Sepsis , Humans , Mice , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt , Lipopolysaccharides/adverse effects , Phosphatidylinositol 3-Kinases/genetics , Lung/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/chemically induced , Cytokines/genetics , Cytokines/metabolism , Sepsis/complications , Sepsis/drug therapy
7.
J Cosmet Dermatol ; 23(4): 1365-1373, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38031658

ABSTRACT

BACKGROUND: Sargassum horneri came ashore after flowing from the South China Sea to Jeju Island a few years ago. This caused a significant environmental impact on coastal areas where S. horneri has accumulated because of decomposition and the release of toxic substances, such as hydrogen sulfide. AIMS: In this study, we evaluated a biological ingredient prepared from fucoidan-rich S. horneri and demonstrated its antiwrinkle effects on ultraviolet B (UVB)-induced fibroblast cells. MATERIALS AND METHODS: Fucoidan samples from S. horneri were prepared according to a previously published process with modifications. The compositional analysis of S. horneri fucoidan extract (SHFE) as well as its effects on antiaging were examined to determine its utility as a functional material. RESULTS: SHFE exhibited antioxidant properties using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. Treatment of UVB-induced fibroblasts with SHFE significantly increased the synthesis of procollagen compared with adenosine treatment and inhibited MMP-1 and MMP-3 expression. In a clinical study, SHFE lotion improved skin barrier effects in forearms and transepidermal water loss (TEWL) values were reduced after 3 weeks of use compared with a placebo. CONCLUSION: SHFE has utility as an additive with functional antiaging effects for a range of cosmetic products as it restores skin hydration in the epidermal barrier.


Subject(s)
Sargassum , Humans , Sargassum/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Collagen
8.
Biomol Ther (Seoul) ; 32(1): 162-169, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38148560

ABSTRACT

Particulate matter (PM) constitutes a hazardous blend of organic and inorganic particles that poses health risks. Inhalation of fine airborne PM with a diameter of ≤ 2.5 µm (PM2.5) can lead to significant lung impairments. (+)-afzelechin (AZC), a natural compound sourced from Bergenia ligulata, boasts a range of attributes, including antioxidant, antimicrobial, anticancer, and cardiovascular effects. However, knowledge about the therapeutic potential of AZC for patients with PM2.5-induced lung injuries remains limited. Thus, in this study, we investigated the protective attributes of AZC against lung damage caused by PM2.5 exposure. AZC was administered to the mice 30 min after intratracheal instillation of PM2.5. Various parameters, such as changes in lung tissue wet/dry (W/D) weight ratio, total protein/total cell ratio, lymphocyte counts, levels of inflammatory cytokines in bronchoalveolar lavage fluid (BALF), vascular permeability, and histology, were evaluated in mice exposed to PM2.5. Data demonstrated that AZC mitigated lung damage, reduced W/D weight ratio, and curbed hyperpermeability induced by PM2.5 exposure. Furthermore, AZC effectively lowered plasma levels of inflammatory cytokines produced by PM2.5 exposure. It reduced the total protein concentration in BALF and successfully alleviated PM2.5-induced lymphocytosis. Additionally, AZC substantially diminished the expression levels of Toll-like receptors 4 (TLR4), MyD88, and autophagy-related proteins LC3 II and Beclin 1. In contrast, it elevated the protein phosphorylation of the mammalian target of rapamycin (mTOR). Consequently, the anti-inflammatory attribute of AZC positions it as a promising therapeutic agent for mitigating PM2.5-induced lung injuries by modulating the TLR4-MyD88 and mTOR-autophagy pathways.

9.
J Proteome Res ; 22(12): 3683-3691, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37897433

ABSTRACT

Among the various cell types that constitute the liver, Kupffer cells (KCs) are responsible for the elimination of gut-derived foreign products. Protein lysine acetylation (Kac) and lactylation (Kla) are dynamic and reversible post-translational modifications, and various global acylome studies have been conducted for liver and liver-derived cells. However, no such studies have been conducted on KCs. In this study, we identified 2198 Kac sites in 925 acetylated proteins and 289 Kla sites in 181 lactylated proteins in immortalized mouse KCs using global acylome technology. The subcellular distributions of proteins with Kac and Kla site modifications differed. Similarly, the specific sequence motifs surrounding acetylated or lactylated lysine residues also showed differences. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to better understand the differentially expressed proteins in the studies by Kac and Kla. In the newly identified Kla, we found K82 lactylation in the high-mobility group box-1 protein in the neutrophil extracellular trap formation category using KEGG enrichment analyses. Here, we report the first proteomic survey of Kac and Kla in KCs.


Subject(s)
Kupffer Cells , Lysine , Animals , Mice , Lysine/metabolism , Kupffer Cells/chemistry , Kupffer Cells/metabolism , Acetylation , Proteomics , Proteome/analysis , Protein Processing, Post-Translational
10.
J Proteome Res ; 22(9): 2860-2870, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37523266

ABSTRACT

Sepsis is one of the life-threatening diseases worldwide. Despite the continuous progress in medicine, the specific mechanism of sepsis remains unclear. A key strategy of pathogens is to use post-translational modification to modulate host factors critical for infection. We employed global immunoprecipitation technology for lysine acetylation (Kac), succinylation (Ksu), and malonylation (Kmal) for the first global lysine acylation (Kacy) analysis in a cecum ligation and puncture (CLP) model in mouse. This was performed to reveal the pathogenic mechanism of integrative Kacy and the changes in modification sites. In total, 2230 sites of 1,235 Kac proteins, 1,887 sites of 433 Ksu proteins, and 499 sites of 276 Kmal proteins were quantified and normalized by their protein levels. We focused on 379 sites in 219 upregulated proteins as the integrative Kacy sites of Kac, Ksu, and Kmal on the basis of sirtuins decreased in the CLP group. KEGG pathway analysis of integrative Kacy in 219 upregulated proteins revealed three central metabolic pathways: glycolysis/gluconeogenesis, pyruvate metabolism, and tricarboxylic acid cycle. These findings reveal the key pathogenic mechanism of integrative PTM alteration in terms of the decreased sirtuins level and provide an important foundation for an in-depth study of the biological function of Kacy in sepsis.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Sepsis , Sirtuins , Mice , Animals , Lysine/metabolism , Acetylation , Sepsis/complications , Sepsis/genetics , Sirtuins/genetics , Sirtuins/metabolism , Protein Processing, Post-Translational
11.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37239882

ABSTRACT

In this study, the potential protective effects of cirsilineol (CSL), a natural compound found in Artemisia vestita, were examined on lipopolysaccharide (LPS)-induced inflammatory responses. CSL was found to have antioxidant, anticancer, and antibacterial properties, and was lethal to many cancer cells. We assessed the effects of CSL on heme oxygenase (HO)-1, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) in LPS-activated human umbilical vein endothelial cells (HUVECs). We also examined the effects of CSL on the expression of iNOS, tumor necrosis factor (TNF)-α, and interleukin (IL)-1ß in the pulmonary histological status of LPS-injected mice. The results showed that CSL increased HO-1 production, inhibited luciferase-NF-κB interaction, and reduced COX-2/PGE2 and iNOS/NO levels, leading to a decrease in signal transducer and activator of transcription (STAT)-1 phosphorylation. CSL also enhanced the nuclear translocation of Nrf2, elevated the binding activity between Nrf2 and antioxidant response elements (AREs), and reduced IL-1ß expression in LPS-treated HUVECs. We found that CSL's suppression of iNOS/NO synthesis was restored by inhibiting HO-1 through RNAi. In the animal model, CSL significantly decreased iNOS expression in the pulmonary biostructure, and TNF-α level in the bronchoalveolar lavage fluid. These findings indicate that CSL has anti-inflammatory properties by controlling iNOS through inhibition of both NF-κB expression and p-STAT-1. Therefore, CSL may have potential as a candidate for developing new clinical substances to treat pathological inflammation.


Subject(s)
Flavones , Inflammation , Animals , Humans , Mice , Cyclooxygenase 2/metabolism , Endothelial Cells/metabolism , Heme Oxygenase-1/metabolism , Inflammation/drug therapy , Lipopolysaccharides/toxicity , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Flavones/pharmacology
12.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175637

ABSTRACT

Acute lung injury (ALI) is a frequent and challenging aspect of sepsis that currently lacks effective treatments. Procyanidin B2 (PB2) has anti-inflammatory and antioxidant properties. The aim of this study was to determine the effectiveness and mechanism of action of PB2 in treating sepsis-induced ALI using animal experiments. A sepsis-induced ALI mouse model was used by administering lipopolysaccharide (LPS) and then evaluating the levels of inflammatory cytokines and lung injury through measurements of cytokine levels using enzyme-linked immunosorbent assay (ELISA), Western blot and real-time PCR, as well as by the examination of relevant signaling pathways. The animal experiments showed that PB2 protected the lungs from injury caused by LPS and reduced the levels of various inflammatory cytokines in both the serum and lung tissue. Western blot analysis showed that PB2 reduced the expression of TLR4/NF-κB and increased the expression of PI3K/Akt, and also inhibited the Hippo and Rho signaling pathways. The results of the study showed that PB2 helps to treat sepsis-induced ALI by controlling cytokine storms and reducing inflammation by altering the expressions of the TLR4/NF-κB, PI3K/Akt, Hippo and Rho signaling pathways. This research provides a foundation for the further investigation of PB2's mechanism and its potential use in treating sepsis.


Subject(s)
Acute Lung Injury , Sepsis , Mice , Animals , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Lipopolysaccharides/pharmacology , Toll-Like Receptor 4/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/chemically induced , Signal Transduction , Lung/metabolism , Cytokines/metabolism , Sepsis/complications , Sepsis/drug therapy
13.
Article in English | MEDLINE | ID: mdl-37084954

ABSTRACT

The recently developed technologies that allow the analysis of each single omics have provided an unbiased insight into ongoing disease processes. However, it remains challenging to specify the study design for the subsequent integration strategies that can associate sepsis pathophysiology and clinical outcomes. Here, we conducted a time-dependent multi-omics integration (TDMI) in a sepsis-associated liver dysfunction (SALD) model. We successfully deduced the relation of the toll-like receptor 4 (TLR4) pathway with SALD. Although TLR4 is a critical factor in sepsis progression, it is not specified in single-omics results but only in the TDMI analysis. This result indicates that the TDMI-based approach is more advantageous than single-omics analysis in terms of exploring the underlying pathophysiological mechanism of this disease. Furthermore, this approach can be an ideal paradigm for insightful biological interpretations of multi-omics datasets that will potentially reveal novel insights into basic biology, health, and diseases, thus allowing the identification of promising candidates for therapeutic strategies.

14.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37111345

ABSTRACT

A small natural substance called cirsilineol (CSL), which was discovered in the plant Artemisia vestita, is lethal to many cancer cells and has antioxidant, anticancer, and antibacterial properties. Here, we investigated the underlying mechanisms of the antithrombotic action of CSL. We demonstrated that CSL has antithrombotic efficacy comparable to rivaroxaban, a direct blood coagulation factor Xa (FXa) inhibitor employed as a positive control, in inhibiting the enzymatic activity of FXa and the platelet aggregation induced by adenosine diphosphate (ADP) and U46619, a thromboxane A2 analog. The expression of P-selectin, the phosphorylation of myristoylated alanine-rich C kinase substrate by U46619 or ADP, and the activation of PAC-1 in platelets were inhibited by CSL. Nitric oxide production was increased by CSL in ADP- or U46619-treated human umbilical vein endothelial cells (HUVECs), although excessive endothelin-1 secretion was suppressed. CSL demonstrated strong anticoagulant and antithrombotic effects in a mouse model of arterial and pulmonary thrombosis. Our findings suggest that CSL is a potential pharmacological candidate for a novel class of anti-FXa and antiplatelet medications.

15.
Int J Mol Sci ; 24(5)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36902409

ABSTRACT

Particulate matter (PM) is a mixture comprising both organic and inorganic particles, both of which are hazardous to health. The inhalation of airborne PM with a diameter of ≤2.5 µm (PM2.5) can cause considerable lung damage. Cornuside (CN), a natural bisiridoid glucoside derived from the fruit of Cornus officinalis Sieb, exerts protective properties against tissue damage via controlling the immunological response and reducing inflammation. However, information regarding the therapeutic potential of CN in patients with PM2.5-induced lung injury is limited. Thus, herein, we examined the protective properties of CN against PM2.5-induced lung damage. Mice were categorized into eight groups (n = 10): a mock control group, a CN control group (0.8 mg/kg mouse body weight), four PM2.5+CN groups (0.2, 0.4, 0.6, and 0.8 mg/kg mouse body weight), and a PM2.5+CN group (0.2, 0.4, 0.6, and 0.8 mg/kg mouse body weight). The mice were administered with CN 30 min following intratracheal tail vein injection of PM2.5. In mice exposed to PM2.5, different parameters including changes in lung tissue wet/dry (W/D) lung weight ratio, total protein/total cell ratio, lymphocyte counts, inflammatory cytokine levels in the bronchoalveolar lavage fluid (BALF), vascular permeability, and histology were examined. Our findings revealed that CN reduced lung damage, the W/D weight ratio, and hyperpermeability caused by PM2.5. Moreover, CN reduced the plasma levels of inflammatory cytokines produced because of PM2.5 exposure, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and nitric oxide, as well as the total protein concentration in the BALF, and successfully attenuated PM2.5-associated lymphocytosis. In addition, CN substantially reduced the expression levels of Toll-like receptors 4 (TLR4), MyD88, and autophagy-related proteins LC3 II and Beclin 1, and increased protein phosphorylation of the mammalian target of rapamycin (mTOR). Thus, the anti-inflammatory property of CN renders it a potential therapeutic agent for treating PM2.5-induced lung injury by controlling the TLR4-MyD88 and mTOR-autophagy pathways.


Subject(s)
Lung Injury , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Cytokines/metabolism , Glucosides/pharmacology , Lung/pathology , Lung Injury/pathology , Myeloid Differentiation Factor 88/metabolism , Particulate Matter/adverse effects , Toll-Like Receptor 4/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
Anim Cells Syst (Seoul) ; 27(1): 1-9, 2023.
Article in English | MEDLINE | ID: mdl-36704446

ABSTRACT

Regulation of osteoclastogenesis and bone-resorbing activity can be an efficacious strategy for treating bone loss diseases because excessive osteoclastic bone resorption leads to the development of such diseases. Here, we investigated the role of (-)-tubaic acid, a thermal degradation product of rotenone, in osteoclast formation and function in an attempt to identify alternative natural compounds. (-)-Tubaic acid significantly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclast differentiation at both the early and late stages, suggesting that (-)-tubaic acid affects the commitment and differentiation of osteoclast progenitors as well as the cell-cell fusion of mononuclear osteoclasts. (-)-Tubaic acid attenuated the activation of extracellular signal-regulated kinase (ERK) and expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and its target genes in response to RANKL. Furthermore, a pit-formation assay revealed that (-)-tubaic acid significantly impaired the bone-resorbing activity of osteoclasts. Our results demonstrated that (-)-tubaic acid exhibits anti-osteoclastogenic and anti-resorptive effects, indicating its therapeutic potential in the management of osteoclast-related bone diseases.

17.
Int J Environ Health Res ; 33(12): 1479-1489, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35854640

ABSTRACT

Fine particulate matter (PM2.5) is an air pollutant that causes severe lung injury. We investigated the effects of Jujuboside B (JB), a component of Zizyphi Spinosi Semen, on lung toxicity caused by PM2.5, and we identified the mechanism of its protective effect. Lung injury in an animal model was induced by intratracheal administration of a PM2.5 suspension. After 2 days of PM2.5 pretreatment, mice were administered JB via the tail vein three times over a 2-day period. JB significantly reduced the histological lung damage as well as the lung wet/dry weight ratio. JB also considerably reduced PM2.5-induced autophagy dysfunction, apoptosis, inflammatory cytokine levels, and the number of PM2.5-induced lymphocytes in the bronchial alveolar fluid. We conclude that by regulating TLR2, 4-MyD88, and mTOR-autophagy pathways, JB exerts a protective effect on lung injury. Thus, JB can be used as a potential therapeutic agent for PM2.5-induced lung damage.


Subject(s)
Lung Injury , Saponins , Mice , Animals , Lung Injury/chemically induced , Lung Injury/drug therapy , Lung , Saponins/toxicity , Saponins/metabolism , Particulate Matter/toxicity
18.
J Med Food ; 26(1): 40-48, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36576404

ABSTRACT

High mobility group box protein 1 (HMGB1) is a biomolecule that acts as an alerting signal of late sepsis by accelerating the production of proinflammatory cytokines, and eventually leads to various inflammation-related symptoms. When released into plasma at high concentration, it disrupts precise diagnosis and prognosis and worsens the survival of patients with systemic inflammatory conditions. Jujuboside B (JB) is a natural compound pressed from the seed of Zizyphi Spinosi Semen, which is known for its medical efficacies in treating various conditions such as hyperlipidemia, hypoxia, and platelet aggregation. Nevertheless, the medicinal activity of JB on HMGB1-involved inflammatory response in vascular cells in the human body is still ambiguous. Therefore, we hypothesized that JB could regulate the lipopolysaccharide (LPS)-induced dynamics of HMGB1 and its mediated cascade in inflammatory responses in human umbilical vein endothelial cells (HUVECs). In this experiment, JB and HMGB1 were administered in that order. In vitro and in vivo permeability, and cell viability, adhesion, and excavation of leukocytes, development of cell adhesion molecules, and lastly production of proinflammatory substances were investigated on human endothelial cells and mouse disease models to investigate the efficacy of JB in inflammatory condition. JB substantially blocked the translocation of HMGB1 from HUVECs and controlled HMGB1-induced adhesion and extravasation of the neutrophils through LPS-treated HUVECs. Moreover, JB decreased the formation of HMGB1 receptors and continually prevented HMGB1-induced proinflammatory mechanisms by blocking transcription of nuclear factor-κB and synthesis of tumor necrosis factor-α. In conclusion, JB demonstrated preventive effects against inflammatory pathologies and showed the potential to be a candidate substance for various inflammatory diseases by regulating HMGB1-mediated cellular signaling.


Subject(s)
HMGB1 Protein , Sepsis , Humans , Animals , Mice , HMGB1 Protein/metabolism , HMGB1 Protein/pharmacology , Lipopolysaccharides/pharmacology , Human Umbilical Vein Endothelial Cells , Sepsis/metabolism , Mice, Inbred C57BL , Cell Movement
19.
J Nat Med ; 77(1): 87-95, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36064835

ABSTRACT

Jujuboside B (JB) found in the seeds of Zizyphi Spinosi Semen possesses pharmacological functions, such as anti-inflammatory, antiplatelet aggregation, and antianxiety potentials. This study evaluated the effect of JB on liver failure in cecal ligation and puncture (CLP)-induced sepsis. First, we observed histopathological changes in the liver by optical microscopy and the activity of enzymes in serum such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST). We further measured the levels of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, nitric oxide (NO), and antioxidative parameters in liver homogenate. The expression of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2), and glucocorticoid receptor (GR) in the liver was observed by Western blotting. CLP enhanced the migration of inflammatory cells, ALT and AST concentrations, and necrosis, which were reduced by JB. In addition, JB reduced 11ß-HSD2 expression and levels of inflammatory mediators (TNF-α, IL-1ß, and NO) in the liver, increased GR expression, enhanced endogenous antioxidative capacity. These results further suggest that JB may protect the liver against CLP-induced damage by regulating anti-inflammatory responses, downregulating 11ß-HSD2 expression and antioxidation, and up-regulating GR expression.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 2 , Saponins , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Glucocorticoids , Saponins/pharmacology , Tumor Necrosis Factor-alpha , Antioxidants/pharmacology
20.
Curr Issues Mol Biol ; 44(12): 5902-5914, 2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36547063

ABSTRACT

Arecae Pericarpium has been found to exert anti-migraine, antidepressant, and antioxidative effects. However, the mechanisms involved are unclear. This study explored the possibility that Arecae Pericarpium ethanol extract (APE) exerts neuroprotective effects against oxidative stress-induced neuronal cell death. Since glutamate excitotoxicity has been implicated in the pathogenesis and development of several neurodegenerative disorders, we explored the mechanisms of action of APE on oxidative stress-induced by glutamate. Our results revealed that pretreatment with APE prevents glutamate-induced HT22 cell death. APE also reduced both the levels of intracellular reactive oxygen species and the apoptosis of cells, while maintaining glutamate-induced mitochondrial membrane potentials. Western blotting showed that pretreatment with APE facilitates the upregulation of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) phosphorylation; the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2); and the production of antioxidant enzymes, including catalase, glutamate-cysteine ligase catalytic subunits, NAD(P)H quinone oxidoreductase 1, and heme oxygenase (HO)-1. The administration of LY294002, a PI3K/Akt inhibitor, attenuated the neuroprotective effects of APE on oxidative stress-induced neuronal cell damage. This allowed us to infer that the protective effects of APE on oxidative damage to cells can be attributed to the PI3K/Akt-mediated Nrf-2/HO-1 signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...