Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(1): eabl6841, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34985959

ABSTRACT

Metal-organic frameworks with high aspect ratios have the potential to yield high-performance gas separation membranes. We demonstrate the scalable synthesis of high­aspect ratio zeolitic imidazolate framework (ZIF)­8 nanoplates via a direct template conversion method in which high aspect ratio­layered Zn hydroxide sheets [Zn5(NO3)2(OH)8] were used as the sacrificial precursor. Successful phase conversion occurs as a result of the collaboration of low template stability and delayed delivery of 2-methylimidazole in weakly interacting solvents, particularly using acetone. When the ZIF-8 nanoplates with an average aspect ratio of 20 were shear aligned in the 6FDA-DAM polymer matrix by bar coating, the separation performance for propylene/propane far surpassed that of the previously reported mixed matrix and polymeric membranes, showing a propylene permeability of 164 Barrer and selectivity of 33.4 at 40 weight % loadings.

2.
Membranes (Basel) ; 11(10)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34677558

ABSTRACT

Graphene-based membranes are promising candidates for efficient organic solvent nanofiltration (OSN) processes because of their unique structural characteristics, such as mechanical/chemical stability and precise molecular sieving. Recently, to improve organic solvent permeance and selectivity, nanopores have been fabricated on graphene planes via chemical and physical methods. The nanopores serve as an additional channel for facilitating ultrafast solvent permeation while filtering organic molecules by size exclusion. This review summarizes the recent developments in nanoporous graphene (NG)-based membranes for OSN applications. The membranes are categorized depending on the membrane structure: single-layer NG, multilayer NG, and graphene-based composite membranes hybridized with other porous materials. Techniques for nanopore generation on graphene, as well as the challenges faced and the perspectives required for the commercialization of NG membranes, are also discussed.

3.
Electrophoresis ; 38(9-10): 1318-1324, 2017 05.
Article in English | MEDLINE | ID: mdl-28169441

ABSTRACT

We developed the photo-crosslinkable hydrogel microfluidic co-culture device to study photothermal therapy and cancer cell migration. To culture MCF7 human breast carcinoma cells and metastatic U87MG human glioblastoma in the microfluidic device, we used 10 w/v% gelatin methacrylate (GelMA) hydrogels as a semi-permeable physical barrier. We demonstrated the effect of gold nanorod on photothermal therapy of cancer cells in the microfluidic co-culture device. Interestingly, we observed that metastatic U87MG human glioblastoma largely migrated toward vascular endothelial growth factor (VEGF)-treated GelMA hydrogel-embedding microchannels. The main advantage of this hydrogel microfluidic co-culture device is to simultaneously analyze the physiological migration behaviors of two cancer cells with different physiochemical motilities and study gold nanorod-mediated photothermal therapy effect. Therefore, this hydrogel microfluidic co-culture device could be a potentially powerful tool for photothermal therapy and cancer cell migration applications.


Subject(s)
Cell Movement/physiology , Coculture Techniques/instrumentation , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Microfluidic Analytical Techniques/instrumentation , Neoplasms/physiopathology , Phototherapy/instrumentation , Cell Line, Tumor , Coculture Techniques/methods , Equipment Design , Humans , Infrared Rays , MCF-7 Cells , Models, Biological
4.
Biomed Mater ; 11(1): 015019, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26928882

ABSTRACT

We developed a photo-crosslinkable hydrogel-encapsulated three-dimensional (3D) microwell array for studying embryonic stem (ES) cell-derived neuronal differentiation. ES cells were cultured for 5 d in microwells and were subsequently encapsulated by photo-crosslinkable gelatin methacrylate (GelMA) and polyethylene glycol (PEG) hydrogels for an additional 7 d. We observed that ES cells cultured in PEG microwells became uniform-sized embryoid bodies (EBs) compared to those in GelMA microwells. Although ES cells were encapsulated by photo-crosslinkable GelMA and PEG hydrogels, they were highly viable. We demonstrated that uniform-sized EBs encapsulated by GelMA hydrogels in PEG microwells are largely differentiated into neuronal cells. It was revealed that neurites at the periphery of EBs in PEG microwells largely extended into the interface between GelMA hydrogels and PEG microwells for generating neuronal networks. Therefore, this photo-crosslinkable GelMA hydrogel-encapsulated PEG microwell array could be a potentially powerful tool for neurodegenerative disease applications.


Subject(s)
Batch Cell Culture Techniques/instrumentation , Embryonic Stem Cells/cytology , Hydrogels/chemistry , Lab-On-A-Chip Devices , Neural Stem Cells/cytology , Printing, Three-Dimensional , Animals , Cell Differentiation/physiology , Cells, Cultured , Embryonic Stem Cells/physiology , Equipment Design , Equipment Failure Analysis , Materials Testing , Mice , Neural Stem Cells/physiology , Tissue Engineering/instrumentation , Tissue Engineering/methods
5.
Langmuir ; 32(11): 2731-6, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26930106

ABSTRACT

The protein-functionalized reduced graphene oxide (rGO) nanosheet is of great interest in stimuli-responsive drug delivery and controlled release applications. We developed doxorubicin (DOX)-loaded bovine serum albumin (BSA)-functionalized rGO (DOX-BSA-rGO) nanosheets. To investigate the reduction of BSA-functionalized GO nanosheets and drug loading efficiency, we used X-ray photoelectron spectroscopy (XPS) and UV-visible spectrophotometer analysis. DOX-BSA-rGO nanosheets exhibited dose-dependent cellular uptake without any cytotoxic effect. We also demonstrated near-infrared (NIR)-induced chemo-photothermal therapy of brain tumor cells treated with DOX-BSA-rGO nanosheets. Therefore, this DOX-BSA-rGO nanosheet could be a powerful tool for chemo-photothermal therapy applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...