Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Digit Imaging ; 34(5): 1099-1109, 2021 10.
Article in English | MEDLINE | ID: mdl-34379216

ABSTRACT

This study aimed to develop a method for detection of femoral neck fracture (FNF) including displaced and non-displaced fractures using convolutional neural network (CNN) with plain X-ray and to validate its use across hospitals through internal and external validation sets. This is a retrospective study using hip and pelvic anteroposterior films for training and detecting femoral neck fracture through residual neural network (ResNet) 18 with convolutional block attention module (CBAM) + + . The study was performed at two tertiary hospitals between February and May 2020 and used data from January 2005 to December 2018. Our primary outcome was favorable performance for diagnosis of femoral neck fracture from negative studies in our dataset. We described the outcomes as area under the receiver operating characteristic curve (AUC), accuracy, Youden index, sensitivity, and specificity. A total of 4,189 images that contained 1,109 positive images (332 non-displaced and 777 displaced) and 3,080 negative images were collected from two hospitals. The test values after training with one hospital dataset were 0.999 AUC, 0.986 accuracy, 0.960 Youden index, and 0.966 sensitivity, and 0.993 specificity. Values of external validation with the other hospital dataset were 0.977, 0.971, 0.920, 0.939, and 0.982, respectively. Values of merged hospital datasets were 0.987, 0.983, 0.960, 0.973, and 0.987, respectively. A CNN algorithm for FNF detection in both displaced and non-displaced fractures using plain X-rays could be used in other hospitals to screen for FNF after training with images from the hospital of interest.


Subject(s)
Deep Learning , Femoral Neck Fractures , Algorithms , Femoral Neck Fractures/diagnostic imaging , Humans , Retrospective Studies , X-Rays
2.
J Clin Med ; 10(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34361982

ABSTRACT

The present study aimed to develop a machine learning network to diagnose middle ear diseases with tympanic membrane images and to identify its assistive role in the diagnostic process. The medical records of subjects who underwent ear endoscopy tests were reviewed. From these records, 2272 diagnostic tympanic membranes images were appropriately labeled as normal, otitis media with effusion (OME), chronic otitis media (COM), or cholesteatoma and were used for training. We developed the "ResNet18 + Shuffle" network and validated the model performance. Seventy-one representative cases were selected to test the final accuracy of the network and resident physicians. We asked 10 resident physicians to make diagnoses from tympanic membrane images with and without the help of the machine learning network, and the change of the diagnostic performance of resident physicians with the aid of the answers from the machine learning network was assessed. The devised network showed a highest accuracy of 97.18%. A five-fold validation showed that the network successfully diagnosed ear diseases with an accuracy greater than 93%. All resident physicians were able to diagnose middle ear diseases more accurately with the help of the machine learning network. The increase in diagnostic accuracy was up to 18% (1.4% to 18.4%). The machine learning network successfully classified middle ear diseases and was assistive to clinicians in the interpretation of tympanic membrane images.

3.
Sci Rep ; 10(1): 17582, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067505

ABSTRACT

This study aimed to verify a deep convolutional neural network (CNN) algorithm to detect intussusception in children using a human-annotated data set of plain abdominal X-rays from affected children. From January 2005 to August 2019, 1449 images were collected from plain abdominal X-rays of patients ≤ 6 years old who were diagnosed with intussusception while 9935 images were collected from patients without intussusception from three tertiary academic hospitals (A, B, and C data sets). Single Shot MultiBox Detector and ResNet were used for abdominal detection and intussusception classification, respectively. The diagnostic performance of the algorithm was analysed using internal and external validation tests. The internal test values after training with two hospital data sets were 0.946 to 0.971 for the area under the receiver operating characteristic curve (AUC), 0.927 to 0.952 for the highest accuracy, and 0.764 to 0.848 for the highest Youden index. The values from external test using the remaining data set were all lower (P-value < 0.001). The mean values of the internal test with all data sets were 0.935 and 0.743 for the AUC and Youden Index, respectively. Detection of intussusception by deep CNN and plain abdominal X-rays could aid in screening for intussusception in children.


Subject(s)
Intussusception/diagnostic imaging , Intussusception/diagnosis , Radiographic Image Interpretation, Computer-Assisted/methods , Abdomen/diagnostic imaging , Algorithms , Area Under Curve , Child, Preschool , Deep Learning , Diagnostic Tests, Routine/methods , Female , Humans , Infant , Infant, Newborn , Male , Mass Screening , Neural Networks, Computer , ROC Curve , Radiography, Abdominal/methods , Reproducibility of Results , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...