Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 11128, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35778463

ABSTRACT

A localized nanoparticle insertion scheme is developed to decouple electron injection from laser evolution in laser wakefield acceleration. Here we report the experimental realization of a controllable electron injection by the nanoparticle insertion method into a plasma medium, where the injection position is localized within the short range of 100 µm. Nanoparticles were generated by the laser ablation process of a copper blade target using a 3-ns 532-nm laser pulse with fluence above 100 J/cm2. The produced electron bunches with a beam charge above 300 pC and divergence of around 12 mrad show the injection probability over 90% after optimizing the ablation laser energy and the temporal delay between the ablation and the main laser pulses. Since this nanoparticle insertion method can avoid the disturbing effects of electron injection process on laser evolution, the stable high-charge injection method can provide a suitable electron injector for multi-GeV electron sources from low-density plasmas.

2.
Phys Rev Lett ; 127(17): 175003, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34739265

ABSTRACT

Ultrafast optical excitation of matter leads to highly excited states that are far from equilibrium. In this study, femtosecond x-ray absorption spectroscopy was used to visualize the ultrafast dynamics in photoexcited warm dense Cu. The rich dynamical features related to d vacancies are observed on femtosecond timescales. Despite the success in explaining x-ray absorption data in the picosecond regime, the new femtosecond data are poorly understood through the traditional two-temperature model based on the fast thermalization concept and the static electronic structure for high-temperature metals. An improved understanding can be achieved by including the recombination dynamics of nonthermal electrons and changes in the screening of the excited d block. The population balance between the 4sp and 3d bands is mainly determined by the recombination rate of nonthermal electrons, and the underpopulated 3d block is initially strongly downshifted and recovered in several hundreds of femtoseconds.

SELECTION OF CITATIONS
SEARCH DETAIL
...