Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cochrane Database Syst Rev ; 10: CD012649, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34661903

ABSTRACT

BACKGROUND: Arsenic is a common environmental toxin. Exposure to arsenic (particularly its inorganic form) through contaminated food and drinking water is an important public health burden worldwide, and is associated with increased risk of neurotoxicity, congenital anomalies, cancer, and adverse neurodevelopment in children. Arsenic is excreted following methylation reactions, which are mediated by folate. Provision of folate through folic acid supplements could facilitate arsenic methylation and excretion, thereby reducing arsenic toxicity. OBJECTIVES: To assess the effects of provision of folic acid (through fortified foods or supplements), alone or in combination with other nutrients, in lessening the burden of arsenic-related health outcomes and reducing arsenic toxicity in arsenic-exposed populations. SEARCH METHODS: In September 2020, we searched CENTRAL, MEDLINE, Embase, 10 other international databases, nine regional databases, and two trials registers. SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs comparing the provision of folic acid (at any dose or duration), alone or in combination with other nutrients or nutrient supplements, with no intervention, placebo, unfortified food, or the same nutrient or supplements without folic acid, in arsenic-exposed populations of all ages and genders. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane. MAIN RESULTS: We included two RCTs with 822 adults exposed to arsenic-contaminated drinking water in Bangladesh. The RCTs compared 400 µg/d (FA400) or 800 µg/d (FA800) folic acid supplements, given for 12 or 24 weeks, with placebo. One RCT, a multi-armed trial, compared FA400 plus creatine (3 g/d) to creatine alone. We judged both RCTs at low risk of bias in all domains. Due to differences in co-intervention, arsenic exposure, and participants' nutritional status, we could not conduct meta-analyses, and therefore, provide a narrative description of the data. Neither RCT reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Folic acid supplements alone versus placebo Blood arsenic. In arsenic-exposed individuals, FA likely reduces blood arsenic concentrations compared to placebo (2 studies, 536 participants; moderate-certainty evidence). For folate-deficient and folate-replete participants who received arsenic-removal water filters as a co-intervention, FA800 reduced blood arsenic levels more than placebo (percentage change (%change) in geometric mean (GM) FA800 -17.8%, 95% confidence intervals (CI) -25.0 to -9.8; placebo GM -9.5%, 95% CI -16.5 to -1.8; 1 study, 406 participants). In one study with 130 participants with low baseline plasma folate, FA400 reduced total blood arsenic (%change FA400 mean (M) -13.62%, standard error (SE) ± 2.87; placebo M -2.49%, SE ± 3.25), and monomethylarsonic acid (MMA) concentrations (%change FA400 M -22.24%, SE ± 2.86; placebo M -1.24%, SE ± 3.59) more than placebo. Inorganic arsenic (InAs) concentrations reduced in both groups (%change FA400 M -18.54%, SE ± 3.60; placebo M -10.61%, SE ± 3.38). There was little to no change in dimethylarsinic acid (DMA) in either group. Urinary arsenic. In arsenic-exposed individuals, FA likely reduces the proportion of total urinary arsenic excreted as InAs (%InAs) and MMA (%MMA) and increases the proportion excreted as DMA (%DMA) to a greater extent than placebo (2 studies, 546 participants; moderate-certainty evidence), suggesting that FA enhances arsenic methylation. In a mixed folate-deficient and folate-replete population (1 study, 352 participants) receiving arsenic-removal water filters as a co-intervention, groups receiving FA had a greater decrease in %InAs (within-person change FA400 M -0.09%, 95% CI -0.17 to -0.01; FA800 M -0.14%, 95% CI -0.21 to -0.06; placebo M 0.05%, 95% CI 0.00 to 0.10), a greater decrease in %MMA (within-person change FA400 M -1.80%, 95% CI -2.53 to -1.07; FA800 M -2.60%, 95% CI -3.35 to -1.85; placebo M 0.15%, 95% CI -0.37 to 0.68), and a greater increase in %DMA (within-person change FA400 M 3.25%, 95% CI 1.81 to 4.68; FA800 M 4.57%, 95% CI 3.20 to 5.95; placebo M -1.17%, 95% CI -2.18 to -0.17), compared to placebo. In 194 participants with low baseline plasma folate, FA reduced %InAs (%change FA400 M -0.31%, SE ± 0.04; placebo M -0.13%, SE ± 0.04) and %MMA (%change FA400 M -2.6%, SE ± 0.37; placebo M -0.71%, SE ± 0.43), and increased %DMA (%change FA400 M 5.9%, SE ± 0.82; placebo M 2.14%, SE ± 0.71), more than placebo. Plasma homocysteine: In arsenic-exposed individuals, FA400 likely reduces homocysteine concentrations to a greater extent than placebo (2 studies, 448 participants; moderate-certainty evidence), in the mixed folate-deficient and folate-replete population receiving arsenic-removal water filters as a co-intervention (%change in GM FA400 -23.4%, 95% CI -27.1 to -19.5; placebo -1.3%, 95% CI -5.3 to 3.1; 1 study, 254 participants), and participants with low baseline plasma folate (within-person change FA400 M -3.06 µmol/L, SE ± 3.51; placebo M -0.05 µmol/L, SE ± 4.31; 1 study, 194 participants). FA supplements plus other nutrient supplements versus nutrient supplements alone In arsenic-exposed individuals who received arsenic-removal water filters as a co-intervention, FA400 plus creatine may reduce blood arsenic concentrations more than creatine alone (%change in GM FA400 + creatine -14%, 95% CI -22.2 to -5.0; creatine -7.0%, 95% CI -14.8 to 1.5; 1 study, 204 participants; low-certainty evidence); may not change urinary arsenic methylation indices (FA400 + creatine: %InAs M 13.2%, SE ± 7.0; %MMA M 10.8, SE ± 4.1; %DMA M 76, SE ± 7.8; creatine: %InAs M 14.8, SE ± 5.5; %MMA M 12.8, SE ± 4.0; %DMA M 72.4, SE ±7.6; 1 study, 190 participants; low-certainty evidence); and may reduce homocysteine concentrations to a greater extent (%change in GM FA400 + creatinine -21%, 95% CI -25.2 to -16.4; creatine -4.3%, 95% CI -9.0 to 0.7; 1 study, 204 participants; low-certainty evidence) than creatine alone. AUTHORS' CONCLUSIONS: There is moderate-certainty evidence that FA supplements may benefit blood arsenic concentration, urinary arsenic methylation profiles, and plasma homocysteine concentration versus placebo. There is low-certainty evidence that FA supplements plus other nutrients may benefit blood arsenic and plasma homocysteine concentrations versus nutrients alone. No studies reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Given the limited number of RCTs, more studies conducted in diverse settings are needed to assess the effects of FA on arsenic-related health outcomes and arsenic toxicity in arsenic-exposed adults and children.


Subject(s)
Arsenic , Adult , Child , Creatine , Dietary Supplements , Folic Acid , Food, Fortified , Humans
2.
J Nutr Biochem ; 72: 108210, 2019 10.
Article in English | MEDLINE | ID: mdl-31473512

ABSTRACT

Despite participation in overlapping metabolic pathways, the relationship between choline and vitamin B-12 has not been well characterized especially during pregnancy. We sought to determine the effects of maternal choline supplementation on vitamin B-12 status biomarkers in human and mouse pregnancy, hypothesizing that increased choline intake would improve vitamin B-12 status. Associations between common genetic variants in choline-metabolizing genes and vitamin B-12 status biomarkers were also explored in humans. Healthy third-trimester pregnant women (n=26) consumed either 480 or 930 mg choline/day as part of a 12-week controlled feeding study. Wild-type NSA and Dlx3 heterozygous (Dlx3+/-) mice, which display placental insufficiency, consumed a 1×, 2× or 4× choline diet and were sacrificed at gestational days 15.5 and 18.5. Serum vitamin B-12, methylmalonic acid (MMA) and homocysteine were measured in all samples; holotranscobalamin (in humans) and hepatic vitamin B-12 (in mice) were also measured. The 2× choline supplementation for 12 weeks in pregnant women yielded higher serum concentrations of holotranscobalamin, the bioactive form of vitamin B-12 (~24%, P=.01). Women with genetic variants in choline dehydrogenase (CHDH) and betaine-homocysteine S-methyltransferase (BHMT) had higher serum MMA concentrations (~31%, P=.03) and lower serum holotranscobalamin concentrations (~34%, P=.03), respectively. The 4× choline dose decreased serum homocysteine concentrations in both NSA and Dlx3+/- mice (~36% and~43% respectively, P≤.015). In conclusion, differences in choline supply due to supplementation or genetic variation modulate vitamin B-12 status during pregnancy, supporting a functional relationship between these nutrients.


Subject(s)
Choline/pharmacology , Maternal Nutritional Physiological Phenomena , Vitamin B 12/blood , Adult , Animals , Betaine-Homocysteine S-Methyltransferase/genetics , Choline Dehydrogenase/genetics , Dietary Supplements , Female , Gene Expression Regulation , Homeodomain Proteins/genetics , Homocysteine/blood , Humans , Methylmalonic Acid/blood , Mice, Mutant Strains , Polymorphism, Single Nucleotide , Pregnancy , Pregnancy Trimester, Third , Transcription Factors/genetics , Young Adult
3.
J Nutr ; 147(4): 499-505, 2017 04.
Article in English | MEDLINE | ID: mdl-28228507

ABSTRACT

Background: Formate provides one-carbon units for de novo purine and thymidylate (dTMP) synthesis and is produced via both folate-dependent and folate-independent pathways. Folate-independent pathways are mediated by cytosolic alcohol dehydrogenase 5 (ADH5) and mitochondrial aldehyde dehydrogenase 2 (ALDH2), which generate formate by oxidizing formaldehyde. Formate is a potential biomarker of B-vitamin-dependent one-carbon metabolism.Objective: This study investigated the contributions of ADH5 and ALDH2 to formate production and folate-dependent de novo purine and dTMP synthesis in HepG2 cells.Methods:ADH5 knockout and ALDH2 knockdown HepG2 cells were cultured in folate-deficient [0 nM (6S) 5-formyltetrahydrofolate] or folate-sufficient [25 nM (6S) 5-formyltetrahydrofolate] medium. Purine biosynthesis was quantified as the ratio of [14C]-formate to [3H]-hypoxanthine incorporated into genomic DNA, which indicates the contribution of the de novo purine synthesis pathway relative to salvage synthesis. dTMP synthesis was quantified as the ratio of [14C]-deoxyuridine to [3H]-thymidine incorporation into genomic DNA, which indicates the capacity of de novo dTMP synthesis relative to salvage synthesis.Results: The [14C]-formate-to-[3H]-hypoxanthine ratio was greater in ADH5 knockout than in wild-type HepG2 cells, under conditions of both folate deficiency (+30%; P < 0.001) and folate sufficiency (+22%; P = 0.02). These data indicate that ADH5 deficiency increases the use of exogenous formate for de novo purine biosynthesis. The [14C]-deoxyuridine-to-[3H]-thymidine ratio did not differ between ADH5 knockout and wild-type cells, indicating that ADH5 deficiency does not affect de novo dTMP synthesis capacity relative to salvage synthesis. Under folate deficiency, ALDH2 knockdown cells exhibited a 37% lower ratio of [14C]-formate to [3H]-hypoxanthine (P < 0.001) compared with wild-type HepG2 cells, indicating decreased use of exogenous formate, or increased endogenous formate synthesis, for de novo purine biosynthesis.Conclusions: In HepG2 cells, ADH5 is a source of formate for de novo purine biosynthesis, especially during folate deficiency when folate-dependent formate production is limited. Formate is also shown to be limiting in the growth of HepG2 cells.


Subject(s)
Aldehyde Oxidoreductases/metabolism , Formates/metabolism , Gene Expression Regulation, Enzymologic/physiology , Purines/biosynthesis , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Aldehyde Oxidoreductases/genetics , Gene Deletion , Hep G2 Cells , Humans , Thymidine Monophosphate/biosynthesis
4.
J Nutr ; 145(7): 1507-14, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25995278

ABSTRACT

BACKGROUND: Limited data are available from controlled studies on biomarkers of maternal vitamin B-12 status. OBJECTIVE: We sought to quantify the effects of pregnancy and lactation on the vitamin B-12 status response to a known and highly controlled vitamin B-12 intake. METHODS: As part of a 10-12 wk feeding trial, pregnant (26-29 wk gestation; n = 26), lactating (5 wk postpartum; n = 28), and control (nonpregnant, nonlactating; n = 21) women consumed vitamin B-12 amounts of ∼8.6 µg/d [mixed diet (∼6 µg/d) plus a prenatal multivitamin supplement (2.6 µg/d)]. Serum vitamin B-12, holotranscobalamin (bioactive form of vitamin B-12), methylmalonic acid (MMA), and homocysteine were measured at baseline and study-end. RESULTS: All participants achieved adequate vitamin B-12 status in response to the study dose. Compared with control women, pregnant women had lower serum vitamin B-12 (-21%; P = 0.02) at study-end, whereas lactating women had higher (P = 0.04) serum vitamin B-12 throughout the study (+26% at study-end). Consumption of the study vitamin B-12 dose increased serum holotranscobalamin in all reproductive groups (+16-42%; P ≤ 0.009). At study-end, pregnant (vs. control) women had a higher holotranscobalamin-to-vitamin B-12 ratio (P = 0.04) with ∼30% (vs. 20%) of total vitamin B-12 in the bioactive form. Serum MMA increased during pregnancy (+50%; P < 0.001) but did not differ by reproductive state at study-end. Serum homocysteine increased in pregnant women (+15%; P = 0.009) but decreased in control and lactating women (-16-17%; P < 0.001). Despite these changes, pregnant women had ∼20% lower serum homocysteine than the other 2 groups at study-end (P ≤ 0.02). CONCLUSION: Pregnancy and lactation alter vitamin B-12 status in a manner consistent with enhanced vitamin B-12 supply to the child. Consumption of the study vitamin B-12 dose (∼3 times the RDA) increased the bioactive form of vitamin B-12, suggesting that women in these reproductive states may benefit from vitamin B-12 intakes exceeding current recommendations. This trial was registered at clinicaltrials.gov as NCT01127022.


Subject(s)
Energy Intake , Micronutrients/administration & dosage , Vitamin B 12/blood , Adult , Biomarkers/blood , Breast Feeding , Choline/administration & dosage , Choline/blood , Dietary Supplements , Dose-Response Relationship, Drug , Double-Blind Method , Female , Healthy Volunteers , Homocysteine/blood , Homocysteine/urine , Humans , Lactation/blood , Methylmalonic Acid/blood , Postpartum Period , Pregnancy , Recommended Dietary Allowances , Vitamin B 12/administration & dosage , Young Adult
5.
Cancer Res ; 74(24): 7442-52, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25336191

ABSTRACT

Few studies have examined associations between plasma choline metabolites and risk of colorectal cancer. Therefore, we investigated associations between plasma biomarkers of choline metabolism [choline, betaine, dimethylglycine, and trimethylamine N-oxide (TMAO)] and colorectal cancer risk among postmenopausal women in a case-control study nested within the Women's Health Initiative Observational Study. We selected 835 matched case-control pairs, and cases were further stratified by tumor site (proximal, distal, or rectal) and stage (local/regional or metastatic). Colorectal cancer was assessed by self-report and confirmed by medical records over the mean of 5.2 years of follow-up. Baseline plasma choline metabolites were measured by LC/MS-MS. In multivariable-adjusted conditional logistic regression models, plasma choline tended to be positively associated with rectal cancer risk [OR (95% confidence interval, CI)(highest vs. lowest quartile) = 2.44 (0.93-6.40); P trend = 0.08], whereas plasma betaine was inversely associated with colorectal cancer overall [0.68 (0.47-0.99); P trend = 0.01] and with local/regional tumors [0.64 (0.42-0.99); P trend = 0.009]. Notably, the plasma betaine:choline ratio was inversely associated with colorectal cancer overall [0.56 (0.39-0.82); P trend = 0.004] as well as with proximal [0.66 (0.41-1.06); P trend = 0.049], rectal [0.27 (0.10-0.78); P trend = 0.02], and local/regional [0.50 (0.33-0.76); P trend = 0.001] tumors. Finally, plasma TMAO, an oxidative derivative of choline produced by intestinal bacteria, was positively associated with rectal cancer [3.38 (1.25-9.16); P trend = 0.02] and with overall colorectal cancer risk among women with lower (vs. higher) plasma vitamin B12 levels (P interaction = 0.003). Collectively, these data suggest that alterations in choline metabolism, which may arise early in disease development, may be associated with higher risk of colorectal cancer. The positive association between plasma TMAO and colorectal cancer risk is consistent with an involvement of the gut microbiome in colorectal cancer pathogenesis.


Subject(s)
Choline/blood , Colorectal Neoplasms/blood , Colorectal Neoplasms/epidemiology , Aged , Betaine/blood , Colorectal Neoplasms/pathology , Female , Humans , Methylamines/blood , Middle Aged , Risk Factors , Women's Health
6.
Epigenetics ; 9(3): 396-403, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24300587

ABSTRACT

DNA methylation is an epigenetic mechanism that regulates gene expression and can be modified by one-carbon nutrients. The objective of this study was to investigate the impact of folic acid (FA) fortification of the US food supply on leukocyte global DNA methylation and the relationship between DNA methylation, red blood cell (RBC) folate, and other one-carbon biomarkers among postmenopausal women enrolled in the Women's Health Initiative Observational Study. We selected 408 women from the highest and lowest tertiles of RBC folate distribution matching on age and timing of the baseline blood draw, which spanned the pre- (1994-1995), peri- (1996-1997), or post-fortification (1998) periods. Global DNA methylation was assessed by liquid chromatography-tandem mass spectrometry and expressed as a percentage of total cytosine. We observed an interaction (P = 0.02) between fortification period and RBC folate in relation to DNA methylation. Women with higher (vs. lower) RBC folate had higher mean DNA methylation (5.12 vs. 4.99%; P = 0.05) in the pre-fortification period, but lower (4.95 vs. 5.16%; P = 0.03) DNA methylation in the post-fortification period. We also observed significant correlations between one-carbon biomarkers and DNA methylation in the pre-fortification period, but not in the peri- or post-fortification period. The correlation between plasma homocysteine and DNA methylation was reversed from an inverse relationship during the pre-fortification period to a positive relationship during the post-fortification period. Our data suggest that (1) during FA fortification, higher RBC folate status is associated with a reduction in leukocyte global DNA methylation among postmenopausal women and; (2) the relationship between one-carbon biomarkers and global DNA methylation is dependent on folate availability.


Subject(s)
DNA Methylation , Folic Acid/administration & dosage , Aged , Biomarkers/blood , Choline/blood , Cohort Studies , Female , Folic Acid/blood , Food, Fortified , Homocysteine/blood , Humans , Leukocytes/metabolism , Middle Aged , Postmenopause
7.
Nutr Cancer ; 65(5): 695-701, 2013.
Article in English | MEDLINE | ID: mdl-23859037

ABSTRACT

As suggested by rodent studies and studies using human breast cancer cells, dietary canola oil is linked with lower breast cancer risk. Here, we investigated the effect of maternal (pregnancy plus lactation) dietary canola oil on the susceptibility of female Sprague-Dawley rat offspring to mammary carcinogenesis. Although the control diet had 10% soybean oil, the treatment diet was formulated to contain 10% canola oil as a fat source. N-nitroso-N-methylurea was injected to induce mammary cancer in offspring. The offspring of canola-fed dams showed significantly decreased tumor multiplicity (1.0 ± 0.3 vs. 1.9 ± 0.3, respectively; P = 0.04) and tumor volume (1232.5 ± 771.0 mm(3) vs. 6,302.5 ± 1,747.4 mm(3), respectively; P = 0.01), along with increased survival rate (87% vs. 47%, respectively; P = 0.01). In addition, the mRNA expression of development-related gamma-glutamyltransferase 1 was significantly higher in the lactating mammary tissues of the canola group dams and mammary tumor tissues of the offspring [2.5 ± 0.6 vs. 0.5 ± 0.2, respectively (P = 0.01) and 0.98 ± 0.03 vs. 0.56 ± 0.15, respectively (P = 0.05)]. These results suggest a potential anticancer effect of maternal dietary canola oil and may be useful in devising prenatal nutritional strategies to reduce breast cancer risk in humans.


Subject(s)
Carcinogenesis , Dietary Fats/administration & dosage , Fatty Acids, Monounsaturated/administration & dosage , Mammary Neoplasms, Experimental/prevention & control , Maternal Nutritional Physiological Phenomena , Animals , Body Weight , Diet , Disease Models, Animal , Female , Lactation , Mammary Neoplasms, Experimental/chemically induced , Methylnitrosourea/toxicity , Pregnancy , Rapeseed Oil , Rats , Rats, Sprague-Dawley
8.
Carcinogenesis ; 33(5): 1106-12, 2012 May.
Article in English | MEDLINE | ID: mdl-22431720

ABSTRACT

Maternal nutrition during pregnancy influences the development and metabolism of the fetus. Recent studies suggest that the cancer risk of offspring later in life is associated with maternal diet, but little is known about the effect of a maternal diet high in methyl nutrients on breast cancer risk. Lipotropes are methyl group-containing essential nutrients (methionine, choline, folate and vitamin B(12)) that play key roles in one-carbon metabolism. In this study, we investigated the long-term effects of maternal dietary high-dose lipotropes (five times higher than in the control diet) on the development and progression of mammary tumors in rat offspring using two separate experiments (in utero exposure with and without postnatal supplementation). In both experiments, the female offspring were injected intraperitoneally with a single dose (50 mg/kg body wt) of N-nitroso-N-methylurea during puberty to induce mammary tumors. Tumor growth and development were recorded, and at the end of the study, tissues were collected for analysis. For both experiments, the offspring from dams fed a high-dose lipotropes showed significantly decreased tumor incidence, tumor multiplicity and tumor volume, while also displaying a significant increase in survival rate and tumor latency. Gene transcription analysis, as measured by quantitative real-time PCR, revealed a significant decrease of histone deacetylase 1 (Hdac1) messenger RNA in mammary tumors in both experiments. Our findings provide evidence that maternal dietary high-dose lipotropes reduce mammary carcinogenesis in offspring in association with long-term alterations in gene expression and may be useful in developing maternal dietary strategies to prevent breast cancer.


Subject(s)
Cell Transformation, Neoplastic/drug effects , Diet , Lipotropic Agents/administration & dosage , Mammary Neoplasms, Experimental/prevention & control , Animals , DNA Methylation , Dietary Supplements , Female , Gene Expression/genetics , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Maternal Nutritional Physiological Phenomena , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Rats, Sprague-Dawley , Risk , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...