Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2311939, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38461516

ABSTRACT

This study establishes a comprehensive library of nanopatterns achievable by a single block copolymer (BCP), ranging from spheres to complex structures like split micelles, flower-like clusters, toroids, disordered micelle arrays, and unspecified unique shapes. The ordinary nanostructures of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) surface micelles deposited on a SiOx surface undergo a unique morphology transformation when immersed directly in solvents. Investigating parameters such as immersion solvents, BCP molecular weight, substrate interactions, and temperature, this work reveals the influence of these parameters on the thermodynamics and kinetics governing the morphology transformation. Additionally, the practical application of BCP nanopattern templates for fabricating metal nanostructures through direct solvent immersion of surface micelles is demonstrated. This approach offers an efficient and effective method for producing diverse nanostructures, with the potential to be employed in nanolithography, catalysts, electronics, membranes, plasmonics, and photonics.

2.
Nanomaterials (Basel) ; 10(6)2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32560084

ABSTRACT

In order to investigate the effect of fluorination of graphene nanoflake on the dispersibility in polypropylene (PP) composites, fluorinated graphene oxide (FGO) was prepared by solvo-thermal reaction and applied as a filler of the PP nanocomposite. Due to the weakened inter-particle attraction among the graphene nanoflake and reduced surface energy difference between PP and the filler, PP/FGO composites showed better exfoliation and dispersion state of the filler compared with that of PP/graphene oxide (GO) or PP/reduced graphene oxide (RGO) composites. The improved exfoliation and dispersion of graphene nanoflake resulted in a significant reinforcement on the composites. The Young's modulus and tensile strength of PP composites filled with 2 wt% of FGO increased by 31% and 15%, respectively, compared with those of PP.

SELECTION OF CITATIONS
SEARCH DETAIL
...