Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Br J Clin Pharmacol ; 90(1): 286-298, 2024 01.
Article in English | MEDLINE | ID: mdl-37602795

ABSTRACT

AIMS: The objective of this study was to characterize the pharmacokinetics (PK)/pharmacodynamics (PD) of DWP16001, a novel sodium-glucose cotransporter 2 inhibitor, and predict efficacious doses for the first-in-human study using various translational approaches. METHODS: A mechanistic PK/PD model was developed for DWP16001 using nonlinear mixed-effect modelling to describe animal PK/PD properties. Using allometry and in silico physiologically based equations, human PK parameters were predicted. Human PD parameters were scaled by applying interspecies difference and in vitro drug-specific factors. Human parameters were refined using early clinical data. Model-predicted PK and PD outcomes were compared to observations before and after parameter refinement. RESULTS: The PK/PD model of DWP16001 was developed using a 2-compartment model with first-order absorption and indirect response. Efficacious doses of 0.3 and 2 mg of DWP16001 were predicted using human half-maximal inhibitory concentration values translated from Zucker Diabetic Fatty rats and normal rats, respectively. After parameter refinement, doses of 0.2 and 1 mg were predicted to be efficacious for each disease model, which improved the prediction results to within a 1.2-fold difference between the model prediction and observation. CONCLUSIONS: This study predicted efficacious human doses of DWP16001 using population PK/PD modelling and a combined translational pharmacometrics approach. Early clinical data allowed the methods used to translate in vitro and in vivo findings to clinical PK/PD values for DWP16001 to be optimized. This study has shown that a refinement step can be readily applied to improve model prediction and further support the study design and conduct of a first-in-human study.


Subject(s)
Models, Biological , Humans , Rats , Animals , Rats, Zucker
2.
Metabolites ; 13(5)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37233625

ABSTRACT

Humans are continuously exposed to benzisothiazolinone (BIT), which is used as a preservative, through multiple routes. BIT is known to be a sensitizer; in particular, dermal contact or aerosol inhalation could affect the local toxicity. In this study, we evaluated the pharmacokinetic properties of BIT in rats following various routes of administration. BIT levels were determined in rat plasma and tissues after oral inhalation and dermal application. Although the digestive system rapidly and completely absorbed orally administered BIT, it underwent severe first-pass effects that prevented high exposure. In an oral dose escalation study (5-50 mg/kg), nonlinear pharmacokinetic properties showed that Cmax and the area under the curve (AUC) increased more than dose proportionality. In the inhalation study, the lungs of rats exposed to BIT aerosols had higher BIT concentrations than the plasma. Additionally, the pharmacokinetic profile of BIT after the dermal application was different; continuous skin absorption without the first-pass effect led to a 2.13-fold increase in bioavailability compared with oral exposure to BIT. The [14C]-BIT mass balance study revealed that BIT was extensively metabolized and excreted in the urine. These results can be used in risk assessments to investigate the relationship between BIT exposure and hazardous potential.

3.
Molecules ; 28(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36677902

ABSTRACT

Benzisothiazolinone (BIT), a biocide widely used as a preservative in household cleaning and personal care products, is cytotoxic to lung cells and a known skin allergen in humans, which highlights the importance of assessing its toxicity and pharmacokinetics. In this study, a simple, sensitive, and accurate LC−MS/MS method for the quantification of BIT in rat plasma, urine, or tissue homogenates (50 µL) using phenacetin as an internal standard was developed and validated. Samples were extracted with ethyl acetate and separated using a Kinetex phenyl−hexyl column (100 × 2.1 mm, 2.6 µm) with isocratic 0.1% formic acid in methanol and distilled water over a run time of 6 min. Positive electrospray ionization with multiple reaction monitoring transitions of m/z 152.2 > 134.1 for BIT and 180.2 > 110.1 for phenacetin was used for quantification. This assay achieved good linearity in the calibration ranges of 2−2000 ng/mL (plasma and urine) and 10−1000 ng/mL (tissue homogenates), with r ≥ 0.9929. All validation parameters met the acceptance criteria. BIT pharmacokinetics was evaluated via an intravenous and dermal application. This is the first study that evaluated BIT pharmacokinetics in rats, providing insights into the relationship between BIT exposure and toxicity and a basis for future risk assessment studies in humans.


Subject(s)
Disinfectants , Tandem Mass Spectrometry , Humans , Rats , Animals , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Phenacetin , Reproducibility of Results
4.
Ann Dermatol ; 34(6): 401-411, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36478422

ABSTRACT

BACKGROUND: Melatonin receptors are present in the human skin and retina. These receptors can be stimulated by light emitting diodes (LEDs) at specific wavelengths, thereby inducing cutaneous photorejuvenation. However, the underlying mechanism remains unclear. OBJECTIVE: To evaluate the influence of LEDs at specific wavelengths on melatonin membrane receptor (MT1) and cutaneous photorejuvenation via the MT1 pathway in vitro. METHODS: Normal human dermal fibroblasts (HDFs) were irradiated using LEDs at different wavelengths (410~940 nm) at a dose of 1 J/cm². MT1 activity was evaluated after melatonin stimulation and LED irradiation. Thereafter, the expressions of collagen (COL) and matrix metalloproteinases (MMPs), with and without luzindole (MT1/2 receptor antagonist), were investigated via semi-quantitative reverse transcription polymerase chain reaction (PCR), real-time PCR, western blotting, and enzyme-linked immunosorbent assay. RESULTS: In HDFs, the MT1 mRNA and protein levels increased significantly in response to melatonin (dose, 50 nM) (p<0.01) and LED irradiation at 595, 630, 850, and 940 nm (p<0.01). LED irradiation up-regulated COL type I and down-regulated MMP-1. Compared to LED irradiation without luzindole, LED irradiation with luzindole produced no significant increase in COL type I mRNA and protein levels (p<0.01). CONCLUSION: We found that LED irradiation induces collagen synthesis and MMP-1 inhibition in HDFs via MT1 activation. Additionally, multiple LED wavelengths (595, 630, 850, and 940 nm) stimulated MT1 in HDFs, unlike in the eyes, where only blue light induced plasma melatonin suppression. This suggests the possibility of the melatoninergic pathway in photorejuvenation.

5.
Transl Clin Pharmacol ; 30(1): 1-12, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35419310

ABSTRACT

Evaluation of drug interactions is an essential step in the new drug development process. Regulatory agencies, including U.S. Food and Drug Administrations and European Medicines Agency, have been published documents containing guidelines to evaluate potential drug interactions. Here, we have streamlined in vitro experiments to assess metabolizing enzyme-mediated drug interactions and provided an overview of the overall process to evaluate potential clinical drug interactions using in vitro data. An experimental approach is presented when an investigational drug (ID) is either a victim or a perpetrator, respectively, and the general procedure to obtain in vitro drug interaction parameters is also described. With the in vitro inhibitory and/or inductive parameters of the ID, basic, static, and/or dynamic models were used to evaluate potential clinical drug interactions. In addition to basic and static models which assume the most conservative conditions, such as the concentration of perpetrators as Cmax, dynamic models including physiologically-based pharmacokinetic models take into account changes in in vivo concentrations and metabolizing enzyme levels over time.

6.
Comput Methods Programs Biomed ; 216: 106662, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35151112

ABSTRACT

BACKGROUND AND OBJECTIVES: In silico experiments and simulations using physiologically based pharmacokinetic (PBPK) and allometric approaches have played an important role in pharmaceutical research and drug development. These methods integrate diverse data from preclinical and clinical development, and have been widely applied to in vitro-in vivo extrapolation (IVIVE) of absorption, distribution, metabolism, and excretion (ADME). METHODS: To develop a user-friendly open tool predicting human PK, we assessed various references on PBPK and allometric methods published so far. They were integrated into a software system named "DallphinAtoM" (Drugs with ALLometry and PHysiology Inside-Animal to huMan), which has a user-friendly platform that can handle complex PBPK models and allometric models with a relatively small amount of essential information of the drug. The models of DallphinAtoM support the integration of data gained during the nonclinical development phase, enable translation from animal to human, and allow the prediction of concentration-time profiles with predicted PK parameters. RESULTS: We presented two illustrative applications using DallphinAtoM: (1) human PK simulation of an orally administered drug using PBPK method; and (2) simulation of intravenous infusion following a two-compartment model using the allometric scaling method. CONCLUSIONS: We conclude that this is a straightforward and transparent tool allowing fast and reliable human PK simulation based on the latest knowledge on biochemical processes and physiology and provides valuable information for decision making during the early-phase drug development.


Subject(s)
Models, Biological , Software , Animals , Computer Simulation , Humans , Pharmacokinetics
7.
Transl Clin Pharmacol ; 29(2): 78-87, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34235120

ABSTRACT

We have streamlined known in vitro methods used to predict the clearance (CL) of small molecules in humans in this tutorial. There have been many publications on in vitro methods that are used at different steps of human CL prediction. The steps from initial intrinsic CL measurement in vitro to the final application of the well-stirred model to obtain predicted hepatic CL (CLH) are somewhat complicated. Except for the experts on drug metabolism and PBPK, many drug development scientists found it hard to figure out the entire picture of human CL prediction. To help readers overcome this barrier, we introduce each method briefly and demonstrate its usage in the chain of related equations destined to the CLH. Despite efforts in the laboratory steps, huge in vitro (predicted CLH)-in vivo (observed CLH) discrepancy is not rare. A simple remedy to this discrepancy is to correct human predicted CLH using the ratio of in vitro-in vivo CLH obtained from animal species.

8.
Arch Toxicol ; 95(6): 2019-2036, 2021 06.
Article in English | MEDLINE | ID: mdl-33844041

ABSTRACT

2-Phenoxyethanol (PE), ethylene glycol monophenyl ether, is widely used as a preservative in cosmetic products as well as in non-cosmetics. Since PE has been used in many types of products, it can be absorbed via dermal or inhaled route for systemic exposures. In this study, the pharmacokinetic (PK) studies of PE and its major metabolite, phenoxyacetic acid (PAA), after dermal (30 mg and 100 mg) and inhaled administration (77 mg) of PE in rats were performed. PE was administered daily for 4 days and blood samples were collected at day 1 and day 4 for PK analysis. PE was rapidly absorbed and extensively metabolized to form PAA. After multiple dosing, the exposures of PE and PAA were decreased presumably due to the induction of metabolizing enzymes of PE and PAA. In dermal mass balance study using [14C]-phenoxyethanol ([14C]PE) as a microtracer, most of the PE and its derivatives were excreted in urine (73.03%) and rarely found in feces (0.66%). Based on these PK results, a whole-body physiologically-based pharmacokinetic (PBPK) model of PE and PAA after dermal application and inhalation in rats was successfully developed. Most of parameters were obtained from the literatures and experiments, and intrinsic clearance at steady-state (CLint,ss) were optimized based on the observed multiple PK data. With the developed model, systemic exposures of PE and PAA after dermal application and inhalation were simulated following no-observed-adverse-effect level (NOAEL) of 500 mg/kg/day for dermal application and that of 12.7 mg/kg/day for inhalation provided by the Environmental Protection Agency. The area under the concentration-time curve at steady state (AUCss) in kidney and liver (and lung for inhalations), which are known target organs of exhibiting toxicity of PE, as well as AUCss in plasma of PE and PAA were obtained from the model.


Subject(s)
Acetates/pharmacokinetics , Ethylene Glycols/pharmacokinetics , Models, Biological , Administration, Cutaneous , Administration, Inhalation , Animals , Area Under Curve , Ethylene Glycols/administration & dosage , Ethylene Glycols/toxicity , Male , No-Observed-Adverse-Effect Level , Rats , Rats, Sprague-Dawley , Tissue Distribution
9.
Transl Clin Pharmacol ; 28(3): 126-135, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33062626

ABSTRACT

Predicting the rate and extent of oral absorption of drugs in humans has been a challenging task for new drug researchers. This tutorial reviews in vitro and PBPK methods reported in the past decades that are widely applied to predicting oral absorption in humans. The physicochemical property and permeability (typically obtained using Caco-2 system) data is the first necessity to predict the extent of absorption from the gut lumen to the intestinal epithelium (Fa). Intrinsic clearance measured using the human microsome or hepatocytes is also needed to predict the gut (Fg) and hepatic (Fh) bioavailability. However, there are many issues with the correction of the inter-laboratory variability, hepatic cell membrane permeability, CYP3A4 dependency, etc. The bioavailability is finally calculated as F = Fa × Fg × Fh. Although the rate of absorption differs by micro-environments and locations in the intestine, it may be simply represented by ka. The ka, the first-order absorption rate constant, is predicted from in vitro and in vivo data. However, human PK-predicting software based on these PBPK theories should be carefully used because there are many assumptions and variances. They include differences in laboratory methods, inter-laboratory variances, and theories behind the methods. Thus, the user's knowledge and experiences in PBPK and in vitro methods are necessary for proper human PK prediction.

10.
Mol Brain ; 13(1): 84, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32471517

ABSTRACT

Clozapine is thought to induce obsessive compulsive symptoms (OCS) in schizophrenic patients. However, because OCS are often comorbid with schizophrenia regardless of clozapine treatment, it remains unclear whether clozapine can generate OCS de novo. Thus, it has been difficult to establish a causal link between clozapine and OCS in human studies. To address this question, we asked whether chronic treatment with clozapine can induce obsessive compulsive disorder (OCD)-like behavior in mice. We injected mice with long-term continuous release pellets embedded with clozapine four times at 60-day intervals and then monitored the mice for signs of OCD-like behavior up to 40 wk. of age. We found clozapine increases grooming behavior as early as 30 wk. of age. We also investigated the effect clozapine on grooming behavior in Sapap3 knockout (KO) mice, which are a well-known animal model of OCD. In Sapap3 heterozygous KO mice, clozapine increases grooming behavior much earlier than in wild-type mice, suggesting a clozapine-OCD gene interaction. Fluoxetine, which is often used in the treatment of OCS and OCD, reduced the grooming behavior induced by clozapine. These data demonstrate that chronic clozapine treatment can generate OCD-like behavior in mice and support the hypothesis that clozapine produces de novo OCS regardless of schizophrenia status.


Subject(s)
Behavior, Animal , Clozapine/adverse effects , Obsessive-Compulsive Disorder/chemically induced , Animals , Grooming , Mice , Mice, Knockout , Nerve Tissue Proteins/deficiency , Obsessive-Compulsive Disorder/genetics
11.
Pharmaceutics ; 12(4)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272615

ABSTRACT

(‒)-Sophoranone (SPN) is a bioactive component of Sophora tonkinensis with various pharmacological activities. This study aims to evaluate its in vitro and in vivo inhibitory potential against the nine major CYP enzymes. Of the nine tested CYPs, it exerted the strongest inhibitory effect on CYP2C9-mediated tolbutamide 4-hydroxylation with the lowest IC50 (Ki) value of 0.966 ± 0.149 µM (0.503 ± 0.0383 µM), in a competitive manner. Additionally, it strongly inhibited other CYP2C9-catalyzed diclofenac 4'-hydroxylation and losartan oxidation activities. Upon 30 min pre-incubation of human liver microsomes with SPN in the presence of NADPH, no obvious shift in IC50 was observed, suggesting that SPN is not a time-dependent inactivator of the nine CYPs. However, oral co-administration of SPN had no significant effect on the pharmacokinetics of diclofenac and 4'-hydroxydiclofenac in rats. Overall, SPN is a potent inhibitor of CYP2C9 in vitro but not in vivo. The very low permeability of SPN in Caco-2 cells (Papp value of 0.115 × 10-6 cm/s), which suggests poor absorption in vivo, and its high degree of plasma protein binding (>99.9%) may lead to the lack of in vitro-in vivo correlation. These findings will be helpful for the safe and effective clinical use of SPN.

12.
Pharmaceutics ; 11(11)2019 Nov 17.
Article in English | MEDLINE | ID: mdl-31744222

ABSTRACT

Tramadol is a µ-opioid receptor agonist and a monoamine reuptake inhibitor. O-desmethyltramadol (M1), the major active metabolite of tramadol, is produced by CYP2D6. A physiologically-based pharmacokinetic model was developed to predict changes in time-concentration profiles for tramadol and M1 according to dosage and CYP2D6 genotypes in the Korean population. Parallel artificial membrane permeation assay was performed to determine tramadol permeability, and the metabolic clearance of M1 was determined using human liver microsomes. Clinical study data were used to develop the model. Other physicochemical and pharmacokinetic parameters were obtained from the literature. Simulations for plasma concentrations of tramadol and M1 (after 100 mg tramadol was administered five times at 12-h intervals) were based on a total of 1000 virtual healthy Koreans using SimCYP® simulator. Geometric mean ratios (90% confidence intervals) (predicted/observed) for maximum plasma concentration at steady-state (Cmax,ss) and area under the curve at steady-state (AUClast,ss) were 0.79 (0.69-0.91) and 1.04 (0.85-1.28) for tramadol, and 0.63 (0.51-0.79) and 0.67 (0.54-0.84) for M1, respectively. The predicted time-concentration profiles of tramadol fitted well to observed profiles and those of M1 showed under-prediction. The developed model could be applied to predict concentration-dependent toxicities according to CYP2D6 genotypes and also, CYP2D6-related drug interactions.

13.
Pharmaceutics ; 11(5)2019 May 09.
Article in English | MEDLINE | ID: mdl-31075931

ABSTRACT

The population pharmacokinetic (PK) parameters that are implemented in therapeutic drug management (TDM) software were generally obtained from a Western population and might not be adequate for PK prediction with a Korean population. This study aimed to develop a population PK model for vancomycin using Korean data to improve the quality of TDM for Korean patients. A total of 220 patients (1020 observations) who received vancomycin TDM services were included in the dataset. A population PK analysis was performed using non-linear mixed effects modeling, and a covariate evaluation was conducted. A two-compartment model with first-order elimination best explained the vancomycin PK, with estimates of 2.82 L/h, 31.8 L, 11.7 L/h, and 75.4 L for CL, V1, Q, and V2, respectively. In the covariate analysis, weight correlated with the volume of the peripheral compartment, and creatinine clearance, hemodialysis, and continuous renal replacement therapy treatments contributed to the clearance of vancomycin. The results show the clear need to optimize the PK parameters used for TDM in Korean patients. Specifically, V1 should be smaller for Korean patients, and renal replacement therapies should be considered in TDM practice. This final model was successfully applied in R shiny as open-source software for Koreans.

15.
Korean J Physiol Pharmacol ; 22(3): 321-329, 2018 May.
Article in English | MEDLINE | ID: mdl-29719454

ABSTRACT

It was recently reported that the Cmax and AUC of rosuvastatin increases when it is coadministered with telmisartan and cyclosporine. Rosuvastatin is known to be a substrate of OATP1B1, OATP1B3, NTCP, and BCRP transporters. The aim of this study was to explore the mechanism of the interactions between rosuvastatin and two perpetrators, telmisartan and cyclosporine. Published (cyclosporine) or newly developed (telmisartan) PBPK models were used to this end. The rosuvastatin model in Simcyp (version 15)'s drug library was modified to reflect racial differences in rosuvastatin exposure. In the telmisartan-rosuvastatin case, simulated rosuvastatin CmaxI/Cmax and AUCI/AUC (with/without telmisartan) ratios were 1.92 and 1.14, respectively, and the Tmax changed from 3.35 h to 1.40 h with coadministration of telmisartan, which were consistent with the aforementioned report (CmaxI/Cmax: 2.01, AUCI/AUC:1.18, Tmax: 5 h → 0.75 h). In the next case of cyclosporine-rosuvastatin, the simulated rosuvastatin CmaxI/Cmax and AUCI/AUC (with/without cyclosporine) ratios were 3.29 and 1.30, respectively. The decrease in the CLint,BCRP,intestine of rosuvastatin by telmisartan and cyclosporine in the PBPK model was pivotal to reproducing this finding in Simcyp. Our PBPK model demonstrated that the major causes of increase in rosuvastatin exposure are mediated by intestinal BCRP (rosuvastatin-telmisartan interaction) or by both of BCRP and OATP1B1/3 (rosuvastatin-cyclosporine interaction).

16.
Acta Derm Venereol ; 98(1): 108-113, 2018 Jan 12.
Article in English | MEDLINE | ID: mdl-28902945

ABSTRACT

Abnormal colouring of the nails may be a sign of underlying systemic or local disorders. This study investigated the prevalence and causes of chromonychia as a whole, as well as of each subtype. Among 163 patients with chromonychia, trauma was the pathogenesis in up to 20.9% (34/163) of cases. The most common subtype was melanonychia (54.0%; 88/163), followed by leukonychia (23.9%), red (8.6%), green (6.7%), yellow (4.9%) and blue (1.8%) nails. Nail matrix naevus (33.3%; 29/88) was the most common cause of melanonychia, while skin diseases (41.0%; 16/39), such as psoriasis (75%, 12/16) and alopecia areata (18.8%; 3/16), in addition to systemic diseases (33.3%; 13/39) including anaemia (38.5%, 5/13) and chronic renal failure (15.4%; 2/13) were the dominant causes of leukonychia. As chromonychia may be the first or only sign of an underlying disorder, it should alert physicians and patients to the need for a prompt and thorough evaluation.


Subject(s)
Hyperpigmentation/etiology , Hypopigmentation/etiology , Melanoma/complications , Nail Diseases/epidemiology , Nail Diseases/etiology , Nevus/complications , Skin Neoplasms/complications , Adult , Alopecia Areata/complications , Anemia/complications , Color , Female , Humans , Hyperpigmentation/epidemiology , Hypopigmentation/epidemiology , Male , Middle Aged , Prevalence , Pseudomonas Infections/complications , Pseudomonas aeruginosa , Psoriasis/complications , Renal Insufficiency, Chronic/complications , Retrospective Studies , Wounds and Injuries/complications , Young Adult
17.
J Korean Med Sci ; 32(11): 1784-1791, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28960030

ABSTRACT

Lung squamous cell cancer (SCC) is typically found in smokers and has a very low incidence in non-smokers, indicating differences in the tumor biology of lung SCC in smokers and non-smokers. However, the specific mutations that drive tumor growth in non-smokers have not been identified. To identify mutations in lung SCC of non-smokers, we performed a genetic analysis using arrays comparative genomic hybridization (ArrayCGH). We analyzed 19 patients with lung SCC who underwent surgical treatment between April 2005 and April 2015. Clinical characteristics were reviewed, and DNA was extracted from fresh frozen lung cancer specimens. All of copy number alterations from ArrayCGH were validated using The Cancer Genome Atlas (TCGA) copy number variation (CNV) data of lung SCC. We examined the frequency of copy number changes according to the smoking status (non-smoker [n = 8] or smoker [n = 11]). We identified 16 significantly altered regions from ArrayCGH data, three gain and four loss regions overlapped with the TCGA lung squamous cell carcinoma (LUSC) patients. Within these overlapped significant regions, we detected 15 genes that have been reported in the Cancer Gene census. We also found that the proto-oncogene GAB2 (11q14.1) was significantly amplified in non-smokers patients and vice versa in both ArrayCGH and TCGA data. Immunohistochemical analyses showed that GAB2 protein was relatively upregulated in non-smoker than smoker tissues (37.5% vs. 9.0%, P = 0.007). GAB2 amplification may have an important role in the development of lung SCC in non-smokers. GAB2 may represent a potential biomarker for lung SCC in non-smokers.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Lung Neoplasms/diagnosis , Adaptor Proteins, Signal Transducing/metabolism , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Comparative Genomic Hybridization , DNA Copy Number Variations , Female , Humans , Immunohistochemistry , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Middle Aged , Polymorphism, Single Nucleotide , Proto-Oncogene Mas , Smokers , Up-Regulation
18.
Neoplasia ; 19(10): 735-749, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28843398

ABSTRACT

Toxicity and resistance remain major challenges for advanced or recurrent cervical cancer therapies, as treatment requires high doses of chemotherapeutic agents. Restoration of TP53 and hypophosphorylated-retinoblastoma (pRB) proteins by human papillomavirus (HPV) E6/E7 siRNA sensitizes HPV-positive cervical cancer cells toward chemotherapeutic agents. Here, we investigated the therapeutic effects of E6/E7 siRNA on the dynamic behavior of TP53 and RB/E2F signaling networks in deciding the cell fate. The synergistic effect of HPV E6/E7 siRNA pool (SP) with chemotherapeutic agents on TP53 and RB/E2F signaling, proliferation, and apoptosis was analyzed in vitro and in vivo. Compared to the E6/E7 SP alone, E6/E7 SP with cisplatin treatment effectively restored TP53 and RB/E2F signaling and contributes to differences in cell fate, such as apoptosis or cell cycle arrest. We also developed a cellular dynamics model that includes TP53-RB/E2F dynamics and cell proliferation profiles, and confirmed its utility for investigating E6/E7 siRNA-based combination regimens. Using a dual reporter system, we further confirmed the cross talk between TP53 and RB/E2F signaling mechanisms. Treatment of E6/E7 SP cationic liposome (i.v.) with cisplatin and paclitaxel (i.p.) potentially inhibited tumor growth in BALB/c-nude mice. Altogether, our findings suggest that stabilization of TP53 and the RB/E2F repressor complex by E6/E7 SP combined with low-dose chemotherapy can effectively suppress tumor growth.


Subject(s)
Antineoplastic Agents/pharmacology , E2F Transcription Factors/genetics , Oncogene Proteins, Viral/genetics , Papillomaviridae/genetics , RNA Interference , RNA, Small Interfering , Tumor Suppressor Protein p53/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Tracking , Disease Models, Animal , E2F Transcription Factors/metabolism , Gene Expression , Gene Expression Regulation/drug effects , Genes, Reporter , Humans , Mice , Microscopy, Confocal , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
19.
Drug Des Devel Ther ; 11: 1043-1053, 2017.
Article in English | MEDLINE | ID: mdl-28408803

ABSTRACT

PURPOSE: A microdose drug-drug interaction (DDI) study may be a valuable tool for anticipating drug interaction at therapeutic doses. This study aimed to compare the magnitude of DDIs at microdoses and regular doses to explore the applicability of a microdose DDI study. PATIENTS AND METHODS: Six healthy male volunteer subjects were enrolled into each DDI study of omeprazole (victim) and known perpetrators: fluconazole (inhibitor) and rifampin (inducer). For both studies, the microdose (100 µg, cold compound) and the regular dose (20 mg) of omeprazole were given at days 0 and 1, respectively. On days 2-9, the inhibitor or inducer was given daily, and the microdose and regular dose of omeprazole were repeated at days 8 and 9, respectively. Full omeprazole pharmacokinetic samplings were performed at days 0, 1, 8, and 9 of both studies for noncompartmental analysis. RESULTS: The magnitude of the DDI, the geometric mean ratios (with perpetrator/omeprazole only) of maximum concentration (Cmax) and area under the curve to the last measurement (AUCt) of the microdose and the regular dose were compared. The geometric mean ratios in the inhibition study were: 2.17 (micro) and 2.68 (regular) for Cmax, and 4.07 (micro), 4.33 (regular) for AUCt. For the induction study, they were 0.26 (micro) and 0.21 (regular) for Cmax, and 0.16 (micro) and 0.15 (regular) for AUCt. There were no significant statistical differences in the magnitudes of DDIs between microdose and regular-dose conditions, regardless of induction or inhibition. CONCLUSION: Our results may be used as partial evidence that microdose DDI studies may replace regular-dose studies, or at least be used for DDI-screening purposes.


Subject(s)
Cytochrome P-450 CYP2C19 Inhibitors/chemistry , Omeprazole/administration & dosage , Omeprazole/chemistry , Adult , Cross-Over Studies , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP2C19 Inhibitors/administration & dosage , Dose-Response Relationship, Drug , Drug Interactions , Fluconazole/administration & dosage , Fluconazole/chemistry , Healthy Volunteers , Humans , Male , Middle Aged , Rifampin/administration & dosage , Rifampin/chemistry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...