Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int Endod J ; 54(5): 753-767, 2021 May.
Article in English | MEDLINE | ID: mdl-33277707

ABSTRACT

AIM: To investigate the role of autophagy in MTA-induced odontoblastic differentiation of human dental pulp cells (HDPCs). METHODOLOGY: In MTA-treated HDPCs, odontoblastic differentiation was assessed based on expression levels of dentine sialophosphoprotein (DSPP) and dentine matrix protein 1 (DMP1), alkaline phosphatase activity (ALP) activity by ALP staining and the formation of mineralized nodule by Alizarin red S staining. Expression of microtubule-associated protein 1A/1B-light chain3 (LC3), adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signalling molecules and autophagy-related genes was analysed by Western blot analysis and Acridine orange staining was used to detect autophagic lysosome. For in vivo experiments, tooth cavity preparation models on rat molars were established and the expression of proteins-related odontogenesis and autophagy markers was observed by Immunohistochemistry and Western blot analysis. Kruskal-Wallis with Dunn's multiple comparison was used for statistical analysis. RESULTS: Mineral trioxide aggregate (MTA) promoted odontoblastic differentiation of HDPCs, accompanied by autophagy induction, including formation of autophagic lysosome and cleavage of LC3 to LC3II (P < 0.05). Conversely, inhibition of autophagy through 3MA significantly attenuated the expression level of DSPP (P < 0.05) and DMP1 (P < 0.05) as well as formation of mineralized nodules (P < 0.05), indicating the functional significance of autophagy in MTA-induced odontoblastic differentiation. Also, MTA increased the activity of AMPK (P < 0.01), whereas inhibition of AMPK by compound C downregulated DSPP (P < 0.01) and DMP1 (P < 0.05), but increased the phosphorylation of mTOR (P < 0.05), p70S6 (P < 0.01) and Unc-51-like kinases 1 (ULK1) (ser757) (P < 0.01), explaining the involvement of AMPK pathway in MTA-induced odontoblast differentiation. In vivo study, MTA treatment after tooth cavity preparation on rat molars upregulated DMP-1 and DSPP as well as autophagy-related proteins LC3II and p62, and enhanced the phosphorylation of AMPK. CONCLUSION: MTA induced odontoblastic differentiation and mineralization by modulating autophagy with AMPK activation in HDPCs. Autophagy regulation is a new insight on regenerative endodontic therapy using MTA treatment.


Subject(s)
Dental Pulp , Odontoblasts , Alkaline Phosphatase , Aluminum Compounds , Animals , Calcium Compounds , Cell Differentiation , Cells, Cultured , Drug Combinations , Extracellular Matrix Proteins , Humans , Oxides , Phosphoproteins , Rats , Silicates
2.
Mol Neurobiol ; 56(9): 6218-6238, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30740619

ABSTRACT

Microglia-mediated neuroinflammatory responses are well known to inhibit neurogenesis in the dentate gyrus (DG) of the adult hippocampus, and growing evidence indicates that therapeutic intervention to suppress microglial activation could be an effective strategy for restoring the impaired neurogenesis and memory performance. In the present study, we investigated the effects of water-soluble arginyl-diosgenin analog (Arg-DG) on the adult hippocampal neurogenesis using a central LPS-induced inflammatory mice model, along with the fundamental mechanisms in vivo and in vitro using LPS-stimulated microglial BV2 cells. Arg-DG (0.6 mg/kg) attenuates LPS-impaired neurogenesis by ameliorating the proliferation and differentiation of neural stem cells (NSCs), and prolonging their survival. The impaired neurogenesis in the hippocampal DG triggered the cognitive function, and that treatment of Arg-DG led to the recovery of cognitive decline. Arg-DG also suppressed the production of LPS-induced pro-inflammatory cytokines in hippocampal DG by blocking microglial activation. In in vitro study, Arg-DG inhibited the production of nitric oxide (NO), nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) expression, and prostaglandin D2 production (PGD2), as well as the pro-inflammatory cytokines, such as interleukin (IL)-6, IL-1ß, and tumor necrosis factor alpha (TNF-α). The anti-inflammatory effect of Arg-DG was regulated by NF-κB and MAPK JNK signaling both in vivo, and in LPS-stimulated microglial BV2 cells. Taken together, these results suggest that Arg-DG might have the potential to treat various neurodegenerative disorders resulting from microglia-mediated neuroinflammation.


Subject(s)
Aging/metabolism , Diosgenin/pharmacology , Hippocampus/physiology , JNK Mitogen-Activated Protein Kinases/metabolism , Microglia/pathology , NF-kappa B/metabolism , Neurogenesis/drug effects , Water/chemistry , Adult Stem Cells/cytology , Adult Stem Cells/drug effects , Adult Stem Cells/metabolism , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cytokines/metabolism , Dentate Gyrus/cytology , Diosgenin/analogs & derivatives , Inflammation Mediators/metabolism , Lipopolysaccharides , Male , Memory Disorders/pathology , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neurons/cytology , Reactive Oxygen Species/metabolism , Solubility
3.
Int Immunopharmacol ; 61: 204-214, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29890414

ABSTRACT

Diosgenin, a precursor of steroid hormones in plants, is known to exhibit diverse pharmacological activities including anti-inflammatory properties. In this study, (3ß, 25R)­spirost­5­en­3­oxyl (2­((2((2­aminoethyl)amino)ethyl)amino)ethyl) carbamate (DGP), a new synthetic diosgenin derivative incorporating primary amine was used to investigate its anti-inflammatory effects and underlying mechanisms of action in lipopolysaccharide (LPS)-stimulated microglial BV2 cells. Pretreatment with DGP resulted in significant inhibition of nitric oxide (NO) synthesis, and down-regulation of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated microglial BV2 cells. In addition, DGP decreased the production of reactive oxygen species (ROS) and pro-inflammatory cytokines such as interleukin (IL)-6, IL-1ß, and tumor necrosis factor alpha (TNF-α). The inhibitory effects of DGP on these inflammatory mediators in LPS-stimulated microglial BV2 cells were regulated by NF-κB signaling through blocking p65 nuclear translocation and NF-κB p65/DNA binding activity. DGP also blocked the phosphorylation of c-Jun amino-terminal kinase (JNK), but not p38 kinase or extracellular signal-regulated kinases (ERK). The NF-κB inhibitor JSH-23 and JNK-specific inhibitor SP600125 significantly decreased NO production and IL-6 release in LPS-stimulated BV2 cells, respectively. The overall results demonstrate that DGP has anti-inflammatory effects on LPS-stimulated BV2 cells via inhibition of NF-κB and JNK activation, suggesting that DGP is a potential prophylactic agent in various neurodegenerative disorders.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Diosgenin/pharmacology , Microglia/physiology , Animals , Anti-Inflammatory Agents/chemical synthesis , Cell Line , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Diosgenin/analogs & derivatives , Diosgenin/chemical synthesis , Down-Regulation , Inflammation Mediators/metabolism , Lipopolysaccharides/immunology , MAP Kinase Kinase 4/metabolism , Mice , Microglia/cytology , Microglia/drug effects , NF-kappa B/metabolism , Neuroimmunomodulation , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...