Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36012006

ABSTRACT

Intradialytic hypotension (IDH) is a common side effect that occurs during hemodialysis and poses a great risk for dialysis patients. Many studies have been conducted so far to predict IDH, but most of these could not be applied in real-time because they used only underlying patient information or static patient disease information. In this study, we propose a multilayer perceptron (MP)-based IDH prediction model using heart rate (HR) information corresponding to time-series information and static data of patients. This study aimed to validate whether HR differences and HR slope information affect real-time IDH prediction in patients undergoing hemodialysis. Clinical data were collected from 80 hemodialysis patients from 9 September to 17 October 2020, in the artificial kidney room at Yeungnam University Medical Center (YUMC), Daegu, South Korea. The patients typically underwent hemodialysis 12 times during this period, 1 to 2 h per session. Therefore, the HR difference and HR slope information within up to 1 h before IDH occurrence were used as time-series input data for the MP model. Among the MP models using the number and data length of different hidden layers, the model using 60 min of data before the occurrence of two layers and IDH showed maximum performance, with an accuracy of 81.5%, a true positive rate of 73.8%, and positive predictive value of 87.3%. This study aimed to predict IDH in real-time by continuously supplying HR information to MP models along with static data such as age, diabetes, hypertension, and ultrafiltration. The current MP model was implemented using relatively limited parameters; however, its performance may be further improved by adding additional parameters in the future, further enabling real-time IDH prediction to play a supporting role for medical staff.


Subject(s)
Hypotension , Kidney Failure, Chronic , Heart Rate , Humans , Hypotension/epidemiology , Hypotension/etiology , Kidney Failure, Chronic/etiology , Neural Networks, Computer , Renal Dialysis/adverse effects
2.
Article in English | MEDLINE | ID: mdl-34682541

ABSTRACT

The characteristics or aspects of important fiducial points (FPs) in the electrocardiogram (ECG) signal are complicated because of various factors, such as non-stationary effects and low signal-to-noise ratio. Due to the various noises caused by the ECG signal measurement environment and by typical ECG signal deformation due to heart diseases, detecting such FPs becomes a challenging task. In this study, we introduce a novel PQRST complex detector using a one-dimensional bilateral filter (1DBF) and the temporal characteristics of FPs. The 1DBF with noise suppression and edge preservation preserves the P- or T-wave whereas it suppresses the QRS-interval. The 1DBF acts as a background predictor for predicting the background corresponding to the P- and T-waves and the remaining flat interval excluding the QRS-interval. The R-peak and QRS-interval are founded by the difference of the original ECG signal and the predicted background signal. Then, the Q- and S-points and the FPs related to the P- and T-wave are sequentially detected using the determined searching range and detection order based on the detected R-peak. The detection performance of the proposed method is analyzed through the MIT-BIH database (MIT-DB) and the QT database (QT-DB).


Subject(s)
Algorithms , Signal Processing, Computer-Assisted , Arrhythmias, Cardiac , Databases, Factual , Electrocardiography , Humans
3.
Sensors (Basel) ; 20(21)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33137901

ABSTRACT

With the advancement of the Internet of Medical Things technology, many vital sign-sensing devices are being developed. Among the diverse healthcare devices, portable electrocardiogram (ECG) measuring devices are being developed most actively with the recent development of sensor technology. These ECG measuring devices use different sampling rates according to the hardware conditions, which is the first variable to consider in the development of ECG analysis technology. Herein, we propose an R-point detection method using an adaptive median filter based on the sampling rate and analyze major arrhythmias using the signal characteristics. First, the sliding window and median filter size are determined according to the set sampling rate, and a wider median filter is applied to the QRS section with high variance within the sliding window. Then, the R point is detected by subtracting the filtered signal from the original signal. Methods for detecting major arrhythmias using the detected R point are proposed. Different types of ECG signals were used for a simulation, including ECG signals from the MIT-BIH arrhythmia database and MIT-BIH atrial fibrillation database, signals generated by a simulator, and actual measured signals with different sampling rates. The experimental results indicated the effectiveness of the proposed R-point detection method and arrhythmia analysis technique.


Subject(s)
Algorithms , Arrhythmias, Cardiac/diagnosis , Electrocardiography , Signal Processing, Computer-Assisted , Computer Simulation , Databases, Factual , Humans
4.
J Korean Med Sci ; 35(34): e317, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32864913

ABSTRACT

BACKGROUND: The novel coronavirus (coronavirus disease 2019 [COVID-19]) outbreak began in China in December last year, and confirmed cases began occurring in Korea in mid-February 2020. Since the end of February, the rate of infection has increased greatly due to mass (herd) infection within religious groups and nursing homes in the Daegu and Gyeongbuk regions. This mass infection has increased the number of infected people more rapidly than was initially expected; the epidemic model based on existing studies had predicted a much lower infection rate and faster recovery. METHODS: The present study evaluated rapid infection spread by mass infection in Korea and the high mortality rate for the elderly and those with underlying diseases through the Susceptible-Exposed-Infected-Recovered-Dead (SEIRD) model. RESULTS: The present study demonstrated early infection peak occurrence (-6.3 days for Daegu and -5.3 days for Gyeongbuk) and slow recovery trend (= -1,486.6 persons for Daegu and -223.7 persons for Gyeongbuk) between the actual and the epidemic model for a mass infection region compared to a normal infection region. CONCLUSION: The analysis of the time difference between infection and recovery can help predict the epidemic peak due to mass (or normal) infection and can also be used as a time index to prepare medical resources.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Models, Statistical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Child , Child, Preschool , Coronavirus Infections/pathology , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Nursing Homes/statistics & numerical data , Pandemics , Pneumonia, Viral/pathology , Republic of Korea/epidemiology , SARS-CoV-2 , Time Factors , Young Adult
5.
PLoS One ; 15(5): e0232583, 2020.
Article in English | MEDLINE | ID: mdl-32392215

ABSTRACT

A modern color filter array (CFA) output is rendered into the final output image using a demosaicing algorithm. During this process, the rendered image is affected by optical and carrier cross talk of the CFA pattern and demosaicing algorithm. Although many CFA patterns have been proposed thus far, an image-quality (IQ) evaluation system capable of comprehensively evaluating the IQ of each CFA pattern has yet to be developed, although IQ evaluation items using local characteristics or specific domain have been created. Hence, we present an IQ metric system to evaluate the IQ performance of CFA patterns. The proposed CFA evaluation system includes proposed metrics such as the moiré robustness using the experimentally determined moiré starting point (MSP) and achromatic reproduction (AR) error, as well as existing metrics such as color accuracy using CIELAB, a color reproduction error using spatial CIELAB, structural information using the structure similarity, the image contrast based on MTF50, structural and color distortion using the mean deviation similarity index (MDSI), and perceptual similarity using Haar wavelet-based perceptual similarity index (HaarPSI). Through our experiment, we confirmed that the proposed CFA evaluation system can assess the IQ for an existing CFA. Moreover, the proposed system can be used to design or evaluate new CFAs by automatically checking the individual performance for the metrics used.


Subject(s)
Algorithms , Image Enhancement , Color , Image Enhancement/instrumentation , Image Enhancement/methods , Metric System , Photography/instrumentation , Photography/methods
6.
Sensors (Basel) ; 20(4)2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32079305

ABSTRACT

An important function in the future healthcare system involves measuring a patient's vital signs, transmitting the measured vital signs to a smart device or a management server, analyzing it in real-time, and informing the patient or medical staff. Internet of Medical Things (IoMT) incorporates information technology (IT) into patient monitoring device (PMD) and is developing traditional measurement devices into healthcare information systems. In the study, a portable ubiquitous-Vital (u-Vital) system is developed and consists of a Vital Block (VB), a small PMD, and Vital Sign Server (VSS), which stores and manages measured vital signs. Specifically, VBs collect a patient's electrocardiogram (ECG), blood oxygen saturation (SpO2), non-invasive blood pressure (NiBP), body temperature (BT) in real-time, and the collected vital signs are transmitted to a VSS via wireless protocols such as WiFi and Bluetooth. Additionally, an efficient R-point detection algorithm was also proposed for real-time processing and long-term ECG analysis. Experiments demonstrated the effectiveness of measurement, transmission, and analysis of vital signs in the proposed portable u-Vital system.


Subject(s)
Biosensing Techniques , Delivery of Health Care/trends , Monitoring, Physiologic/methods , Vital Signs/physiology , Blood Pressure/physiology , Body Temperature/physiology , Computers , Electrocardiography/methods , Humans , Oximetry/methods , Telemedicine/trends
7.
Sensors (Basel) ; 19(20)2019 Oct 13.
Article in English | MEDLINE | ID: mdl-31614905

ABSTRACT

Commercial visibility sensors among meteorological sensors estimate the visibility distance based on transmission, backward scattering, and forward scattering principle. These optical visibility sensors yield comparatively accurate local visibility distance. However, it is still difficult to obtain comprehensive visibility information for a wide area, such as the coast or harbor due to the sensor structure using straightness and scattering properties of light. In this paper, we propose a novel visibility distance estimation method using dark channel prior (DCP) and distance map based on a camera image. The proposed method improves the local limit of optical visibility sensor and detects the visibility distance of a wide area more precisely. First, the dark channel for an input sea-fog image is calculated. The binary transmission image is obtained by applying a threshold to the estimated transmission from the dark channel. Then, the sum of the distance values of pixels, corresponding to the sea-fog boundary, is averaged, in order to derive the visibility distance. This paper also proposes a novel air-light and transmission estimation technique in order to extract the visibility distance for an abnormal sea-fog image, including any light source, such as sunlight, reflection light, and illumination light, etc. The estimated visibility distance was compared with optical visibility distance of an optical visibility sensor and their agreement was evaluated.

SELECTION OF CITATIONS
SEARCH DETAIL
...