Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 797: 149093, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34303238

ABSTRACT

To investigate the major triggers of nitrous oxide (N2O) production in a full-scale wastewater treatment plant, N2O emissions and wastewater characteristics (ammonia, nitrite, nitrate, total nitrogen, dissolved inorganic carbon, dissolved organic carbon, pH, temperature, dissolved oxygen and specific oxygen uptake rate), the results of variations in the cycling of a sequential batch reactor (SBR, where only full nitrification was performed), were monitored seasonally for 16 months. Major triggers of N2O production were investigated based on a seasonal measured database using a random forest (RF) model and sensitivity analysis, which was applied to identify important input variables. As the result of seasonal monitoring in the full-scale SBR, the N2O emission factor relative to daily total nitrogen removal ranged from 0.05 to 2.68%, corresponding to a range of N2O production rate from 0.02 to 0.70 kg-N/day. Results from the RF model and sensitivity analysis revealed that emissions during nitrification were directly or indirectly related to nitrite accumulation, temperature, ammonia loading rate and the specific oxygen uptake rate ratio between ammonia oxidizing bacteria and nitrite oxidizing bacteria (sOUR-ratio). However, changes in the microbial community did not significantly impact N2O emissions. Based on these results, the sOUR-ratio could represent the major trigger for N2O emission in a full-scale BNR system: a higher sOUR-ratio value with an average of 3.13 ± 0.23 was linked to a higher N2O production rate with an average value of 1.27 ± 0.12 kg-N/day (corresponding to 3.96 ± 1.20% of N2O emission factor relative to daily TN removal), while a lower sOUR-ratio with an average value of 2.39 ± 0.27 was correlated with a lower N2O production average rate of 0.17 ± 0.11 kg-N/day (corresponding to 0.74 ± 0.69% of N2O emission factor) (p-value = 0.00001, Mann-Whitney test).


Subject(s)
Bioreactors , Wastewater , Denitrification , Nitrification , Nitrogen/analysis , Nitrous Oxide/analysis , Seasons , Sewage
2.
Water Res ; 184: 116144, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32731040

ABSTRACT

Wastewater treatment plants (WWTPs) have long been recognized as point sources of N2O, a potent greenhouse gas and ozone-depleting agent. Multiple mechanisms, both biotic and abiotic, have been suggested to be responsible for N2O production from WWTPs, with basis on extrapolation from laboratory results and statistical analyses of metadata collected from operational full-scale plants. In this study, random forest (RF) analysis, a machine-learning approach for feature selection from highly multivariate datasets, was adopted to investigate N2O production mechanism in activated sludge tanks of WWTPs from a novel perspective. Standardized measurements of N2O effluxes coupled with exhaustive metadata collection were performed at activated sludge tanks of three biological nitrogen removal WWTPs at different times of the year. The multivariate datasets were used as inputs for RF analyses. Computation of the permutation variable importance measures returned biomass-normalized dissolved inorganic carbon concentration (DIC·VSS-1) and specific ammonia oxidation activity (sOURAOB) as the most influential parameters determining N2O emissions from the aerated zones (or phases) of activated sludge bioreactors. For the anoxic tanks, dissolved-organic-carbon-to-NO2-/NO3- ratio (DOC·(NO2--N + NO3--N)-1) was singled out as the most influential. These data analysis results clearly indicate disparate mechanisms for N2O generation in the oxic and anoxic activated sludge bioreactors, and provide evidences against significant contributions of N2O carryover across different zones or phases or niche-specific microbial reactions, with aerobic NH3/NH4+ oxidation to NO2- and anoxic denitrification predominantly responsible from aerated and anoxic zones or phases of activated sludge bioreactors, respectively.


Subject(s)
Denitrification , Nitrogen , Bioreactors , Nitrification , Nitrous Oxide/analysis , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL
...