Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36711670

ABSTRACT

Plasmodium falciparum (Pf) is causing the greatest malaria burden, yet the liver stages (LS) of this most important parasite species have remained poorly studied. Here, we used a human liver-chimeric mouse model in combination with a novel fluorescent PfNF54 parasite line (PfNF54cspGFP) to isolate PfLS-infected hepatocytes and generate transcriptomes that cover the major LS developmental phases in human hepatocytes. RNA-seq analysis of early Pf LS trophozoites two days after infection, revealed a central role of translational regulation in the transformation of the extracellular invasive sporozoite into intracellular LS. The developmental time course gene expression analysis indicated that fatty acid biosynthesis, isoprenoid biosynthesis and iron metabolism are sustaining LS development along with amino acid metabolism and biosynthesis. Countering oxidative stress appears to play an important role during intrahepatic LS development. Furthermore, we observed expression of the variant PfEMP1 antigen-encoding var genes, and we confirmed expression of PfEMP1 protein during LS development. Transcriptome comparison of the late Pf liver stage schizonts with P. vivax (Pv) late liver stages revealed highly conserved gene expression profiles among orthologous genes. A notable difference however was the expression of genes regulating sexual stage commitment. While Pv schizonts expressed markers of sexual commitment, the Pf LS parasites were not sexually committed and showed expression of gametocytogenesis repression factors. Our results provide the first comprehensive gene expression profile of the human malaria parasite Pf LS isolated during in vivo intrahepatocytic development. This data will inform biological studies and the search for effective intervention strategies that can prevent infection.

2.
Biochemistry ; 52(9): 1583-93, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23406339

ABSTRACT

Complex I (NADH-quinone oxidoreductase) is an enzyme that catalyzes the initial electron transfer from nicotinamide adenine dinucleotide (NADH) to flavin mononucleotide (FMN) bound at the tip of the hydrophilic domain of complex I. The electron flow into complex I is coupled to the generation of a proton gradient across the membrane that is essential for the synthesis of ATP. However, Helicobacter pylori has an unusual complex I that lacks typical NQO1 and NQO2 subunits, both of which are generally included in the NADH dehydrogenase domain of complex I. Here, we determined the solution structure of HP1264, one of the unusual subunits of complex I from H. pylori, which is located in place of NQO2, by three-dimensional nuclear magnetic resonance (NMR) spectroscopy and revealed that HP1264 can bind to FMN through UV-visible, fluorescence, and NMR titration experiments. This result suggests that FMN-bound HP1264 could be involved in the initial electron transfer step of complex I. In addition, HP1264 is structurally most similar to Escherichia coli TusA, which belongs to the SirA-like superfamily having an IF3-like fold in the SCOP database, implying that HP1264 adopts a novel fold for FMN binding. On the basis of the NMR titration data, we propose the candidate residues Ile32, Met34, Leu58, Trp68, and Val71 of HP1264 for the interaction with FMN. Notably, these residues are not conserved in the FMN binding site of any other flavoproteins with known structure. This study of the relationship between the structure and FMN binding property of HP1264 will contribute to improving our understanding of flavoprotein structure and the electron transfer mechanism of complex I.


Subject(s)
Flavin Mononucleotide/metabolism , Helicobacter pylori/enzymology , Quinone Reductases/chemistry , Quinone Reductases/metabolism , Binding Sites , Helicobacter pylori/chemistry , Helicobacter pylori/metabolism , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Folding , Protein Subunits/chemistry , Protein Subunits/metabolism , Tryptophan/chemistry , Tryptophan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...