Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 9(3): 377-381, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-35648553

ABSTRACT

Biomimetic systems that undergo macroscopic phase transformations by transducing and amplifying external cues are highly desirable for applications such as self-healing. Here, we report self-assembly of polyelectrolyte complexes into a vesicular structure that can accommodate hydrophilic guest molecules, including enzymes. Triggered depolymerization of one of the polyelectrolyte molecules in the complex causes the vesicle to disassemble and release its contents. Such a triggered release of enzymes causes molecular-scale events to be amplified due to the enzyme's catalytic properties. This feature has been utilized to demonstrate construction of hydrogels from the destruction of nanoscopic polymeric vesicles. The design principles developed here are broadly adaptable to other triggerable depolymerization motifs reported in the literature.

2.
Carbohydr Polym ; 228: 115391, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31635733

ABSTRACT

Fungal biofilm formation is an emerging problem in a wide range of health-related applications. This study aims to design and synthesize amphiphilic quaternary ammonium chitosans (AQACs) that could bind onto fungal biofilms to kill adherent fungal cells, and establish their structural/fungicidal activity relationships. AQACs with different hydrophobic alkyl chain length (C4, C8, and C12) were synthesized by quaternization of 3-bromopropionic acid with the corresponding tertiary amines, followed by reacting with chitosan using the EDC/NHS chemistry. The new AQACs were soluble in water, yet formed self-aggregates in the solution with different sizes. In antifungal tests against free-floating Candida albicans, shorter alkyl chains (C4) in the AQACs resulted in the most potent fungicidal effect. However, in the treatment of Candida biofilms formed on solid surfaces, AQACs with longer alkyl chains (C8 and C12) were much more effective than their shorter chain counterpart (C4). The effects of alkyl chain self-aggregation on the opposite trend in fungicidal and anti-biofilm activities were discussed. All the AQACs showed excellent cytocompatibility with mammalian cells.


Subject(s)
Antifungal Agents/chemistry , Biofilms/drug effects , Chitosan/chemistry , Quaternary Ammonium Compounds/chemistry , Animals , Biocompatible Materials/chemistry , Candida albicans/drug effects , Candida albicans/physiology , Cell Line , Molecular Conformation
3.
J Phys Chem A ; 120(44): 8794-8803, 2016 Nov 10.
Article in English | MEDLINE | ID: mdl-27802038

ABSTRACT

A complete photophysical characterization of organic molecules designed for use as molecular materials is critical in the design and construction of devices such as organic photovoltaics (OPV). The nature of a molecule's excited state will be altered in molecules employing the same chromophoric units but possessing different molecular architectures. For this reason, we examine the photophysical reactions of two BODIPY-based D-A and A-D-A molecules, where D is the donor and A is the acceptor. A BODIPY (4,4'-difluoro-4-bora-3a,4a-diaza-s-indacene) moiety serves as the A component and is connected through the meso position using a 3-hexylthiophene linker to a N-(2-ethylhexyl)dithieno[3,2-b:2',3'-d]pyrrole (DTP), which serves as the D component. An A-D-A motif is compared to its corresponding D-A dyad counterpart. We show a potential advantage to the A-D-A motif over the D-A motif in creating longer-lived excited states. Transient absorption (TA) spectroscopy is used to characterize the photophysical evolution of each molecule's excited state. Global analysis of TA data using singular value decomposition and target analysis is performed to identify decay-associated difference spectra (DADS). The DADS reveal the spectral features associated with charge-transfer excited states that evolve with different dynamics. A-D-A possess slightly longer excited-state lifetimes, 42 ps nonradiative decay, and 4.64 ns radiative decay compared to those of D-A, 24 ps nonradiative decay, and 3.95 ns radiative decay. A longer lived A-D-A component is observed with microsecond lifetimes, representing a small fraction of the total photophyscial product. Steady-state and time-resolved photoluminescence augment the insights from TA, while electrochemistry and spectroelectrochemistry are employed to identify the nature of the excited state. Density functional theory supports the observed electronic and electrochemical properties of the D-A and A-D-A molecules. These results form a complete picture of the electronic and photophysical properties of D-A and A-D-A and provide contextualization for structure-function relationships between molecules and OPV devices.

4.
ACS Appl Mater Interfaces ; 6(14): 11376-84, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-25019960

ABSTRACT

2,4-Bis[4'-(N,N-di(4″-hydroxyphenyl)amino)-2',6'-dihydroxyphenyl]squaraine (Sq-TAA-OH, optical bandgap 1.4 eV, HOMO level -5.3 eV by ultraviolet photoelectron spectroscopy) is used as an active layer material in solution processed, bulk-heterojunction organic photovoltaic cells with configuration ITO/PEDOT:PSS/Sq-TAA-OH:PC71BM/LiF/Al. Power conversion efficiencies (PCEs) up to 4.8% are obtained by a well-reproducible procedure using a mixture of good and poor Sq-TAA-OH solubilizing organic solvents, with diiodooctane (DIO) additive to make a bulk heterojunction layer, followed by thermal annealing, to give optimized V(OC) = 0.84-0.86 V, J(SC) = 10 mA cm(-2), and FF = 0.53. X-ray diffraction and scattering studies of pristine, pure Sq-TAA-OH solution-cast films show d-spacing features similar to single-crystal packing and spacing. The DIO additive in a good solvent/poor solvent mixture apparently broadens the size distribution of Sq-TAA-OH crystallites in pristine films, but thermal annealing provides a narrower size distribution. Direct X-ray diffraction and scattering morphological studies of "as-fabricated" active layers show improved Sq-TAA-OH/PC71BM phase separation and formation of crystallites, ∼48 nm in size, under conditions that give the best PCE.

5.
ACS Appl Mater Interfaces ; 6(13): 9920-4, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24945883

ABSTRACT

Polymer solar cells fabricated in air under ambient conditions are of significant current interest, because of the implications in practicality of such devices. However, only moderate performance has been obtained for the air-processed devices. Here, we report that enhanced short circuit current density (JSC) and open circuit voltage (VOC) in air-processed poly(3-hexylthiophene) (P3HT)-based solar cells can be obtained by using a series of donor-acceptor dyes as the third component in the device. Power conversion efficiencies up to 4.6% were obtained upon addition of the dyes which are comparable to high-performance P3HT solar cells fabricated in controlled environments. Multilayer planar solar cells containing interlayers of the donor-acceptor dyes, revealed that along with infrared sensitization, an energy level cascade architecture and Förster resonance energy transfer could contribute to the enhanced performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...