Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters










Publication year range
1.
iScience ; 27(2): 108868, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318360

ABSTRACT

Nox4-derived H2O2 generation plays an important role in the pathogenesis of chronic kidney diseases (CKDs) such as diabetic nephropathy (DN). Here, we showed that SH3 domain-containing Ysc84-like 1 (SH3YL1), a Nox4 cytosolic activator, regulated DN. Streptozotocin (STZ)-induced type Ⅰ diabetic models in SH3YL1 whole-body knockout (KO) mice and podocyte-specific SH3YL1 conditional KO (Nphs2-Cre/SH3YL1fl/fl) mice were established to investigate the function of SH3YL1 in DN. The expression of fibrosis markers and inflammatory cytokines, the generation of oxidative stress, and the loss of podocytes were suppressed in diabetic SH3YL1 KO and Nphs2-Cre/SH3YL1fl/fl mice, compared to diabetic control mice. To extrapolate the observations derived from diabetic mice to clinical implication, we measured the protein level of SH3YL1 in patients DN. In fact, the SH3YL1 level was increased in patients DN. Overall, the SH3YL1-Nox4 complex was identified to play an important role in renal inflammation and fibrosis, resulting in the development of DN.

2.
Cell Biosci ; 13(1): 108, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37308968

ABSTRACT

BACKGROUND: Various renal abnormalities, including hydronephrosis, polycystic kidney disease, and hydroureter, have been reported, and these abnormalities are present in DiGeorge syndrome, renal dysplasia, and acute kidney failure. Previous studies have shown that various genes are associated with renal abnormalities. However, the major target genes of nonobstructive hydronephrosis have not yet been elucidated. RESULTS: We examined neuroblast differentiation-associated protein Ahnak localization and analyzed morphogenesis in developing kidney and ureter. To investigated function of Ahnak, RNA-sequencing and calcium imaging were performed in wild type and Ahnak knockout (KO) mice. Ahnak localization was confirmed in the developing mouse kidneys and ureter. An imbalance of calcium homeostasis and hydronephrosis, which involves an expanded renal pelvis and hydroureter, was observed in Ahnak KO mice. Gene Ontology enrichment analysis on RNA-seq results indicated that 'Channel Activity', 'Passive Transmembrane Transporter Activity' and 'Cellular Calcium Ion Homeostasis' were downregulated in Ahnak KO kidney. 'Muscle Tissue Development', 'Muscle Contraction', and 'Cellular Calcium Ion Homeostasis' were downregulated in Ahnak KO ureter. Moreover, peristaltic movement of smooth muscle in the ureter was reduced in Ahnak KO mice. CONCLUSIONS: Abnormal calcium homeostasis causes renal disease and is regulated by calcium channels. In this study, we focused on Ahnak, which regulates calcium homeostasis in several organs. Our results indicate that Ahnak plays a pivotal role in kidney and ureter development, and in maintaining the function of the urinary system.

3.
Eur J Med Chem ; 244: 114854, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36274279

ABSTRACT

Several lines of evidence indicated that generation of NADPH oxidase (Nox)-mediated reactive oxygen species are associated with neuronal inflammation, leading to Parkinson's disease (PD). Novel benzylidene-1-methyl-2-thioxoimidazolidin-one derivatives as Nox inhibitors were designed and synthesized in order to increase blood-brain barrier (BBB) permeability to target Nox in brain cells. In lucigenin chemiluminescence assay, eight compounds showed excellent inhibition activity against NADPH oxidases and parallel artificial membrane permeability assay (PAMPA) identified compound 11 with high passive permeability. To validate the effect of compound 11 on neuronal inflammation, we tested the regulatory activity of compound 11 in lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines in BV-2 microglial cells and LPS-mediated microglial migration. Treatment of BV2 cells with compound 11 resulted in suppressed production of pro-inflammatory cytokines and migration activity of BV2 cells in response to LPS. To evaluate the therapeutic efficacy of compound 11 in PD animal model, compound 11 was applied to MPTP-induced PD mouse model. Oral administration of compound 11 (30 mg/kg/daily, 4 weeks) into the mice resulted in suppression of dopaminergic neuronal death in substantia nigra (SN) and in striatum as well as inhibition of microglial migration into SN. These results implicate compound 11 as a novel therapeutic agent for the treatment of PD.


Subject(s)
Antiparkinson Agents , Enzyme Inhibitors , Imidazolidines , NADPH Oxidases , Parkinson Disease , Animals , Mice , Cytokines/metabolism , Disease Models, Animal , Dopaminergic Neurons/drug effects , Inflammation/chemically induced , Lipopolysaccharides , Mice, Inbred C57BL , Microglia/drug effects , NADPH Oxidases/antagonists & inhibitors , Parkinson Disease/drug therapy , Antiparkinson Agents/chemistry , Antiparkinson Agents/pharmacology , Antiparkinson Agents/therapeutic use , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Imidazolidines/chemistry , Imidazolidines/pharmacology , Imidazolidines/therapeutic use
4.
Kidney Res Clin Pract ; 41(Suppl 2): S89-S98, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35977907

ABSTRACT

Oxidative stress can cause generation of uncontrolled reactive oxygen species (ROS) and lead to cytotoxic damage to cells and tissues. Recently, it has been shown that transient ROS generation can serve as a secondary messenger in receptor-mediated cell signaling. Although excessive levels of ROS are harmful, moderated levels of ROS are essential for normal physiological function. Therefore, regulating cellular ROS levels should be an important concept for development of novel therapeutics for treating diseases. The overexpression and hyperactivation of NADPH oxidase (Nox) can induce high levels of ROS, which are strongly associated with diabetic nephropathy. This review discusses the theoretical basis for development of the Nox inhibitor as a regulator of ROS homeostasis to provide emerging therapeutic opportunities for diabetic nephropathy.

5.
Cancer Lett ; 525: 146-157, 2022 01 28.
Article in English | MEDLINE | ID: mdl-34742871

ABSTRACT

The NADPH oxidase (Nox) family of enzymes is solely dedicated in the generation of reactive oxygen species (ROS). ROS generated by Nox are involved in multiple signaling cascades and a myriad of pathophysiological conditions including cancer. As such, ROS seem to have both detrimental and beneficial roles in a number of cellular functions, including cell signaling, growth, apoptosis and proliferation. Regulatory mechanisms are required to control the activity of Nox enzymes in order to maintain ROS balance within the cell. Here, we performed genome-wide screening for deubiquitinating enzymes (DUBs) regulating Nox organizer 1 (NoxO1) protein expression using a CRISPR/Cas9-mediated DUB-knockout library. We identified cylindromatosis (CYLD) as a binding partner regulating NoxO1 protein expression. We demonstrated that the overexpression of CYLD promotes ubiquitination of NoxO1 protein and reduces the NoxO1 protein half-life. The destabilization of NoxO1 protein by CYLD suppressed excessive ROS generation. Additionally, CRISPR/Cas9-mediated knockout of CYLD in PC-3 cells promoted cell proliferation, migration, colony formation and invasion in vitro. In xenografted mice, injection of CYLD-depleted cells consistently led to tumor development with increased weight and volume. Taken together, these results indicate that CYLD acts as a destabilizer of NoxO1 protein and could be a potential tumor suppressor target for cancer therapeutics.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Deubiquitinating Enzyme CYLD/genetics , Prostatic Neoplasms/genetics , Ubiquitination/genetics , Animals , Apoptosis/genetics , CRISPR-Cas Systems/genetics , Cell Proliferation/genetics , Deubiquitinating Enzymes/genetics , Disease Progression , Gene Expression Regulation, Neoplastic/genetics , Genome, Human/genetics , Heterografts , Humans , Male , Prostatic Neoplasms/pathology , Reactive Oxygen Species/metabolism , Signal Transduction/genetics
6.
Stem Cell Rev Rep ; 18(3): 1181-1192, 2022 03.
Article in English | MEDLINE | ID: mdl-34802139

ABSTRACT

Reactive oxygen species (ROS) play important roles as second messengers in a wide array of cellular processes including differentiation of stem cells. We identified Nox4 as the major ROS-generating enzyme whose expression is induced during differentiation of embryoid body (EB) into cells of all three germ layers. The role of Nox4 was examined using induced pluripotent stem cells (iPSCs) generated from Nox4 knockout (Nox4-/-) mouse. Differentiation markers showed significantly reduced expression levels consistent with the importance of Nox4-generated ROS during this process. From transcriptomic analyses, we found insulin-like growth factor 2 (IGF2), a member of a gene family extensively involved in embryonic development, as one of the most down-regulated genes in Nox4-/- cells. Indeed, addition of IGF2 to culture partly restored the differentiation competence of Nox4-/- iPSCs. Our results reveal an important signaling axis mediated by ROS in control of crucial events during differentiation of pluripotent stem cells.


Subject(s)
Embryoid Bodies , Induced Pluripotent Stem Cells , Animals , Cell Differentiation/genetics , Germ Layers/metabolism , Induced Pluripotent Stem Cells/metabolism , Mice , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Reactive Oxygen Species/metabolism
7.
Neoplasia ; 23(9): 993-1001, 2021 09.
Article in English | MEDLINE | ID: mdl-34352405

ABSTRACT

Previously we demonstrated that Ahnak mediates transforming growth factor-ß (TGFß)-induced epithelial-mesenchymal transition (EMT) during tumor metastasis. It is well-known that circulating tumor cells (CTCs) invade the vasculature of adjacent target tissues before working to adapt to the host environments. Currently, the molecular mechanism by which infiltrated tumor cells interact with host cells to survive within target tissue environments is far from clear. Here, we show that Ahnak regulates tumor metastasis through PCSK9 expression. To validate the molecular function of Ahnak in metastasis, B16F10 melanoma cells were injected into WT and Ahnak knockout (Ahnak-/-) mice. Ahnak-/- mice were more resistant to the pulmonary metastasis of B16F10 cells compared to wild-type (WT) mice. To investigate the host function of Ahnak in recipient organs against metastasis of melanoma cells, transcriptomic analyses of primary pulmonary endothelial cells from WT or Ahnak-/- mice in the absence or presence of TGFß stimulation were performed. We found PCSK9, along with several other candidate genes, was involved in the invasion of melanoma cells into lung tissues. PCSK9 expression in the pulmonary artery was higher in WT mice than Ahnak-/- mice. To evaluate the host function of PCSK9 in lung tissues during the metastasis of melanoma cells, we established lung epithelial cell-specific tamoxifen-induced PCSK9 conditional KO mice (Scgb1a1-Cre/PCSK9fl/fl). The pulmonary metastasis of B16F10 cells in Scgb1a1-Cre/PCSK9fl/fl mice was significantly suppressed, indicating that PCSK9 plays an important role in the metastasis of melanoma cells. Taken together, our data demonstrate that Ahnak regulates metastatic colonization through the regulation of PCSK9 expression.


Subject(s)
Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Lung/metabolism , Melanoma/metabolism , Membrane Proteins/biosynthesis , Neoplasm Proteins/biosynthesis , Proprotein Convertase 9/biosynthesis , Animals , Humans , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Melanoma/genetics , Melanoma/pathology , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Membrane Proteins/genetics , Mice , Mice, Knockout , Mice, Transgenic , Neoplasm Proteins/genetics , Proprotein Convertase 9/genetics
8.
Exp Mol Med ; 53(3): 468-482, 2021 03.
Article in English | MEDLINE | ID: mdl-33785868

ABSTRACT

The AHNAK nucleoprotein has been determined to exert an anti-obesity effect in adipose tissue and further inhibit adipogenic differentiation. In this study, we examined the role of AHNAK in regulating hepatic lipid metabolism to prevent diet-induced fatty liver. Ahnak KO mice have reportedly exhibited reduced fat accumulation in the liver and decreased serum triglyceride (TG) levels when provided with either a normal chow diet or a high-fat diet (HFD). Gene expression profiling was used to identify novel factors that could be modulated by genetic manipulation of the Ahnak gene. The results revealed that fibroblast growth factor 21 (FGF21) was markedly increased in the livers of Ahnak KO mice compared with WT mice fed a HFD. Ahnak knockdown in hepatocytes reportedly prevented excessive lipid accumulation induced by palmitate treatment and was associated with increased secretion of FGF21 and the expression of genes involved in fatty acid oxidation, which are primarily downstream of PPARα. These results indicate that pronounced obesity and hepatic steatosis are attenuated in HFD-fed Ahnak KO mice. This may be attributed, in part, to the induction of FGF21 and regulation of lipid metabolism, which are considered to be involved in increased fatty acid oxidation and reduced lipogenesis in the liver. These findings suggest that targeting AHNAK may have beneficial implications in preventing or treating hepatic steatosis.


Subject(s)
Diet, High-Fat/adverse effects , Fatty Liver/prevention & control , Fibroblast Growth Factors/agonists , Lipid Metabolism , Membrane Proteins/physiology , Neoplasm Proteins/physiology , Animals , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
9.
Cell Rep ; 33(3): 108245, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33086058

ABSTRACT

Cytosolic proteins are required for regulation of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (Nox) isozymes. Here we show that Src homology 3 (SH3) domain-containing YSC84-like 1 (SH3YL1), as a Nox4 cytosolic regulator, mediates lipopolysaccharide (LPS)-induced H2O2 generation, leading to acute kidney injury. The SH3YL1, Ysc84p/Lsb4p, Lsb3p, and plant FYVE proteins (SYLF) region and SH3 domain of SH3YL1 contribute to formation of a complex with Nox4-p22phox. Interaction of p22phox with SH3YL1 is triggered by LPS, and the complex induces H2O2 generation and pro-inflammatory cytokine expression in mouse tubular epithelial cells. After LPS injection, SH3YL1 knockout mice show lower levels of acute kidney injury biomarkers, decreased secretion of pro-inflammatory cytokines, decreased infiltration of macrophages, and reduced tubular damage compared with wild-type (WT) mice. The results strongly suggest that SH3YL1 is involved in renal failure in LPS-induced acute kidney injury (AKI) mice. We demonstrate that formation of a ternary complex of p22phox-SH3YL1-Nox4, leading to H2O2 generation, induces severe renal failure in the LPS-induced AKI model.


Subject(s)
Acute Kidney Injury/metabolism , Membrane Proteins/genetics , NADPH Oxidase 4/genetics , Animals , Cytokines/metabolism , Disease Models, Animal , Female , Hydrogen Peroxide/metabolism , Kidney/pathology , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 4/metabolism , NADPH Oxidases/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
10.
Anat Sci Int ; 95(3): 323-333, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32067190

ABSTRACT

AHNAK has been reported to be involved in actin cytoskeleton rearrangement of some cell types, calcium homeostasis, and activation of T cells. Although the functional role of AHNAK in muscle cells, epidermis, and brain has been determined, its association with apparent clinical impairment has not been found yet. During phenotypic analysis of AHNAK knock out (KO) mice for many years, we observed that AHNAK KO mice showed very slow growth. Snouts of these animals were very short, and their bones were easily broken compared to normal mice. It is known that AHNAK is closely related to calcium. However, intensive morphological studies on phenotypes of bone have yet been reported for AHNAK. Thus, the objective of the present study was to analyze the morphology of skull, mandibular, limbs, and caudal bones of AHNAK KO mice intensively using micro-CT with many factors for various ages of these mice (6 weeks, 18 weeks, and 40 weeks). As a result, it was found that the facial region of AHNAK KO mouse showed a large difference in mandible than skull. Their both femur and tibia were shortened, and bone strength was also significantly decreased compared to normal mice. Particularly, the tail bone of AHNAK KO mice exhibited morphological abnormality by age. Taken together, these results suggest that AHNAK plays an important role in bone shape, development, and metabolism. Although our results demonstrated that AHNAK has a distinct role in bone, further investigations are needed to determine various features of bone metabolism related to AHNAK in the future.


Subject(s)
Bone and Bones/anatomy & histology , Mandible/anatomy & histology , Membrane Proteins , Mice, Knockout/anatomy & histology , Neoplasm Proteins , Skull/anatomy & histology , X-Ray Microtomography , Animals , Calcium/metabolism , Extremities , Skull/diagnostic imaging
11.
Front Cell Dev Biol ; 8: 571676, 2020.
Article in English | MEDLINE | ID: mdl-33585438

ABSTRACT

Chemosensitization of cancer cells with small molecules may improve the therapeutic index of antitumoral agents by making tumor cells sensitive to the drug regimen and thus overcome the treatment resistance and side effects of single therapy. Cell membrane lipid rafts are known to transduce various signaling events in cell proliferation. Sensitizing cancer cells may cause modulation of membrane lipid rafts which may potentially be used in improving anticancer drug response. Cedrol, a natural sesquiterpene alcohol, was used to treat human leukemia K562 and colon cancer HT-29 cell lines, and effects were observed. Cedrol decreased the cell viability by inducing apoptosis in both cell lines by activation of pro-apoptosis protein BID and inhibition of anti-apoptosis proteins Bcl-X L , Bcl-2, and XIAP. Cedrol activated the caspase-9-dependent mitochondrial intrinsic pathway of apoptosis. Furthermore, cedrol inhibited the levels of pAKT, pERK, and pmTOR proteins as well as nuclear and cytoplasmic levels of the p65 subunit of NF-κB. Cedrol caused redistribution of cholesterol and sphingomyelin contents from membrane lipid raft, which was confirmed by a combined additive effect with methyl-ß-cyclodextrin (lipid raft-disrupting agent). Lipid raft destabilization by cedrol led to the increased production of ceramides and inhibition of membrane-bound NADPH oxidase 2 enzyme activity. Cholesterol/sphingomyelin-redistributing abilities of cedrol appear as a novel mechanism of growth inhibition of cancer cells. Cedrol can be classified as a natural lipid raft-disrupting agent with possibilities to be used in general studies involving membrane lipid raft modifications.

12.
Biomol Ther (Seoul) ; 28(1): 25-33, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31875663

ABSTRACT

Several recent studies have reported that reactive oxygen species (ROS), superoxide anion and hydrogen peroxide (H2O2), play important roles in various cellular signaling networks. NADPH oxidase (Nox) isozymes have been shown to mediate receptormediated ROS generation for physiological signaling processes involved in cell growth, differentiation, apoptosis, and fibrosis. Detectable intracellular levels of ROS can be induced by the electron leakage from mitochondrial respiratory chain as well as by activation of cytochrome p450, glucose oxidase and xanthine oxidase, leading to oxidative stress. The up-regulation and the hyper-activation of NADPH oxidases (Nox) also likely contribute to oxidative stress in pathophysiologic stages. Elevation of the renal ROS level through hyperglycemia-mediated Nox activation results in the oxidative stress which induces a damage to kidney tissues, causing to diabetic nephropathy (DN). Nox inhibitors are currently being developed as the therapeutics of DN. In this review, we summarize Nox-mediated ROS generation and development of Nox inhibitors for therapeutics of DN treatment.

13.
Pharmaceutics ; 11(9)2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31533299

ABSTRACT

In a previous study, the specific NOX1/2/4 inhibitor Ewha-18278 was confirmed as a possible treatment for osteoporosis both in vitro and in vivo. Here, we investigated the pharmacokinetics (PK) of the compound by intravenous (IV) and oral administrations to rats. Dimethyl sulfoxide (DMSO)-based and diazepam injection-based formulations were used to dissolve the compound. In the latter formulation applicable to humans, the changes in PK parameters were monitored at two different concentrations (1 mg/mL and 2 mg/mL). The area under the plasma concentration-time curve from zero time to infinity (AUCinf) of Ewha-18278 was highest in the DMSO-based formulation (2 mg/mL). Also, the concentration was increased 1.6-fold at the low concentration of the diazepam injection-based formulation compared to the high concentration. There was no statistical significance in the AUCinf of the compound between DMSO-based formulation (2 mg/mL) and diazepam injection-based formulation (1 mg/mL). These results suggest that Ewha-18278 can be delivered to humans by both IV and oral routes. In addition, the diazepam injection-based formulation of Ewha-18278 appears to be a suitable candidate for dosage development for future toxicity test and clinical trial.

14.
Exp Mol Med ; 51(7): 1-13, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31292433

ABSTRACT

We hypothesized that NADPH oxidase 4 (Nox4) is involved in the formation of neointimal atherosclerotic plaques through the migration of smooth muscle cells (SMCs) in response to flagellin. Here, we demonstrate that TLR5-mediated Nox4 activation regulates the migration of SMCs, leading to neointimal plaque formation in atherosclerosis. To investigate the molecular mechanism by which the TLR5-Nox4 cascade mediates SMC migration, we analyzed the signaling cascade in primary vascular SMCs (VSMCs) from wild-type (WT) or Nox4 KO mice. Stimulation of VSMCs from Nox4 KO mice with flagellin failed to induce H2O2 production and Rac activation compared with stimulation of VSMCs from WT mice. Moreover, the migration of Nox4-deficient VSMCs was attenuated in response to flagellin in transwell migration and wound healing assays. Finally, we performed partial carotid artery ligation in ApoE KO and Nox4ApoE DKO mice fed a high-fat diet (HFD) with or without recombinant FliC (rFliC) injection. Injection of rFliC into ApoE KO mice fed a HFD resulted in significantly increased SMC migration into the intimal layer, whereas SMC accumulation was not detected in Nox4ApoE DKO mice. We conclude that activation of the TLR5-Nox4 cascade plays an important role in the formation of neointimal atherosclerotic plaques.


Subject(s)
Atherosclerosis/enzymology , Flagellin/administration & dosage , NADPH Oxidase 4/metabolism , Plaque, Atherosclerotic/enzymology , Signal Transduction , Toll-Like Receptor 5/metabolism , Animals , Atherosclerosis/pathology , Carotid Arteries/pathology , Cell Movement , Chemokines/analysis , Diet, High-Fat/adverse effects , Flagellin/genetics , Male , Mice, Knockout, ApoE , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/pathology , NADPH Oxidase 4/genetics , Neointima/enzymology , Neointima/pathology , Phenotype , Plaque, Atherosclerotic/pathology , Salmonella enteritidis/genetics , Toll-Like Receptor 5/genetics
15.
BMB Rep ; 52(7): 434-438, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30670147

ABSTRACT

We have previously reported the effects of 2-(trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a synthetic phospholipid, on megakaryocytic differentiation of myeloid leukemia cells. Here, we demonstrate that (R)-TEMOSPho enhances megakaryopoiesis and plateletogenesis from primary hematopoietic stem cells (HSCs) induced by thrombopoietin (TPO). Specifically, we demonstrate at sub-saturation levels of TPO, the addition of (R)-TEMOSPho enhances differentiation and maturation of megakaryocytes (MKs) from murine HSCs derived from fetal liver. Furthermore, we show that production of platelets with (R)-TEMOSPho in combination with TPO is also more efficient than TPO alone and that platelets generated in vitro with these two agents are as functional as those from TPO alone. TPO can thus be partly replaced by or supplemented with (R)-TEMOSPho, and this in turn implies that (R)-TEMOSPho can be useful in efficient platelet production in vitro and potentially be a valuable option in designing cell-based therapy. [BMB Reports 2019; 52(7): 434-438].


Subject(s)
Blood Platelets/cytology , Blood Platelets/drug effects , Cell Differentiation/drug effects , Megakaryocytes/cytology , Megakaryocytes/drug effects , Organophosphates/pharmacology , Thrombopoietin/pharmacology , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Female , Flow Cytometry , Mice , Organophosphates/chemistry , Pregnancy
16.
FASEB J ; 33(3): 3404-3419, 2019 03.
Article in English | MEDLINE | ID: mdl-30452880

ABSTRACT

Reactive oxygen species (ROS) derived from NADPH oxidase (Nox) has been shown to activate ADP-ribosyl cyclase (ARC), which produces the Ca2+ mobilizing second messenger, cyclic ADP-ribose (cADPR). In the present study, we examined how ROS activates cluster of differentiation (CD)38, a mammalian prototype of ARC. CD38 exists in type II and III forms with opposing membrane orientation. This study showed the coexpression of type II and III CD38 in lymphokine-activated killer (LAK) cells. The catalytic site of the constitutively active type II CD38 faces the outside of the cell or the inside of early endosomes (EEs), whereas the basally inactive type III CD38 faces the cytosol. Type III CD38 interacted with Nox4/phosphorylated-p22phox (p-p22phox) in EEs of LAK cells upon IL-8 treatment. H2O2 derived from Nox4 activated type III CD38 by forming a disulfide bond between Cys164 and Cys177, resulting in increased cADPR formation. Our study identified the mechanism by which type III CD38 is activated in an immune cell (LAK), in which H2O2 generated by Nox4 oxidizes and activates type III CD38 to generate cADPR. These findings provide a novel model of cross-talk between ROS and Ca2+ signaling.-Park, D.-R., Nam, T.-S., Kim, Y.-W., Bae, Y. S., Kim, U.-H. Oxidative activation of type III CD38 by NADPH oxidase-derived hydrogen peroxide in Ca2+ signaling.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Hydrogen Peroxide/metabolism , Membrane Glycoproteins/metabolism , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Animals , Antigens, Differentiation/metabolism , Cell Line, Tumor , Cyclic ADP-Ribose/metabolism , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Oxidative Stress/physiology , Second Messenger Systems/physiology
17.
Cell Death Differ ; 26(9): 1582-1599, 2019 09.
Article in English | MEDLINE | ID: mdl-30464227

ABSTRACT

Despite numerous studies on the molecular switches governing the conversion of stemness to differentiation in embryonic stem cells (ESCs), little is known about the involvement of the retromer complex. Under neural differentiation conditions, Vps26a deficiency (Vps26a-/-) or knockdown suppressed the loss of stemness and subsequent neurogenesis from ESCs or embryonic carcinoma cells, respectively, as evidenced by the long-lasting expression of stemness markers and the slow appearance of neuronal differentiation markers. Interestingly, relatively low reactive oxygen species (ROS) levels were generated during differentiation of Vps26a-/- ESCs, and treatment with an antioxidant or inhibitor of NADPH oxidase (Nox), a family of ROS-generating enzymes, led to restoration of stemness in wild-type cells to the level of Vps26a-/- cells during neurogenesis. Importantly, a novel interaction between Vps26a and Nox4 linked to the activation of ERK1/2 depended highly on ROS levels during neurogenesis, which were strongly suppressed in differentiating Vps26a-/- ESCs. Moreover, inhibition of phosphorylated ERK1/2 (pERK1/2) resulted in decreased ROS and Nox4 levels, indicating the mutual dependency between pERK1/2 and Nox4-derived ROS during neurogenesis. These results suggest that Vps26a regulates stemness by actively cooperating with the Nox4/ROS/ERK1/2 cascade during neurogenesis. Our findings have important implications for understanding the regulation of stemness via crosstalk between the retromer molecule and redox signaling, and may contribute to the development of ESC-based therapeutic strategies for the mass production of target cells.


Subject(s)
NADPH Oxidase 4/genetics , Neural Stem Cells/metabolism , Neurogenesis/genetics , Vesicular Transport Proteins/genetics , Animals , Cell Differentiation/genetics , Gene Expression Regulation, Developmental/genetics , Humans , MAP Kinase Signaling System/genetics , Mice , Neurons/metabolism , Reactive Oxygen Species/metabolism
18.
Sci Rep ; 8(1): 14379, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30258109

ABSTRACT

Previously, we reported a molecular mechanism by which Ahnak potentiates transforming growth factor-ß (TGFß) signaling during cell growth. Here, we show that Ahnak induces epithelial-mesenchymal transition (EMT) in response to TGFß. EMT phenotypes, including altered in cell morphology, and expression patterns of various EMT marker genes were detected in HaCaT keratinocytes transfected with Ahnak-specific siRNA. Knockdown of Ahnak expression in HaCaT keratinocytes resulted in attenuated cell migration and invasion. We found that Ahnak activates TGFß signaling via Smad3 phosphorylation, leading to enhanced Smad3 transcriptional activity. To validate function of Ahnak in EMT of B16F10 cells having high metastatic and tumorigenic properties, we established B16F10 cells with stable knockdown of Ahnak. N-cadherin expression and Smad3 phosphorylation were significantly decreased in B16F10-shAhnak cells, compared to B16F10-shControl cells after treatment of TGFß. Moreover, TGFß failed to induce cell migration and cell invasion in B16F10-shAhnak cells. To determine whether Ahnak regulates the metastatic activity of B16F10 cells, we established a lung metastasis model in C57BL/6 mice via tail vein injection of B16F10-shAhnak cells. Lung metastasis was significantly suppressed in mice injected with B16F10-shAhnak cells, compared to those injected with B16F10-shControl cells. Taken together, we propose that TGFß-Ahnak signaling axis regulates EMT during tumor metastasis.


Subject(s)
Epithelial-Mesenchymal Transition , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Melanoma, Experimental/pathology , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Transforming Growth Factor beta/metabolism , Animals , Cell Line, Tumor , Humans , Lung/metabolism , Lung/pathology , Lung Neoplasms/metabolism , Male , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Neoplasm Metastasis/pathology
19.
Pharmacology ; 102(3-4): 180-189, 2018.
Article in English | MEDLINE | ID: mdl-30099457

ABSTRACT

BACKGROUND: NADPH oxidases (Nox) is a major enzyme system contributing to oxidative stress, which plays an important role in the pathogenesis of diabetic kidney disease (DKD). We have shown an elevation of renal Nox1, Nox2, and Nox4 in diabetic mice. APX-115, a pan-Nox inhibitor, attenuated the progression of DKD in mice. As the standard diabetic mice cannot fully mimic human DKD, the present study was aimed to show the dose-dependent effect and to provide a confirmatory evidence of APX-115 in attenuating DKD in diabetic rats. METHOD: Type 1 diabetes was induced by a single 60 mg/kg intraperitoneal injection of streptozotocin in Sprague-Dawley rats. 0.5, 5, or 30 mg APX-115/kg/day or losartan 1 mg/kg/day were administered orally to diabetic rats for 8 weeks. RESULTS: APX-115 treatment showed an improvement in kidney function and tubular and podocyte -injury, as well as attenuation of inflammation, fibrosis, and oxidative stress as much as losartan, a comparative drug and mainstay treatment in DKD. Therapeutic effect of APX-115 was exhibited in a dose-dependent manner; a dose of 30 mg/kg displayed a superior efficacy. CONCLUSION: This finding verified the pre-clinical data of APX-115 in protecting against DKD, which is important to bring APX-115 toward the next stage of drug development.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Diabetic Nephropathies/drug therapy , NADPH Oxidases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyridines/pharmacology , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/enzymology , Diabetes Mellitus, Type 1/pathology , Diabetic Nephropathies/enzymology , Diabetic Nephropathies/pathology , Diabetic Nephropathies/prevention & control , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Kidney/drug effects , Kidney/enzymology , Kidney/pathology , Losartan/pharmacology , Male , NADPH Oxidases/metabolism , Podocytes/drug effects , Podocytes/pathology , Protective Agents/pharmacology , Rats , Rats, Sprague-Dawley
20.
Mol Cancer Res ; 16(8): 1287-1298, 2018 08.
Article in English | MEDLINE | ID: mdl-29724814

ABSTRACT

AHNAK is known to be a tumor suppressor in breast cancer due to its ability to activate the TGFß signaling pathway. However, the role of AHNAK in lung tumor development and progression remains unknown. Here, the Ahnak gene was disrupted to determine its effect on lung tumorigenesis and the mechanism by which it triggers lung tumor development was investigated. First, AHNAK protein expression was determined to be decreased in human lung adenocarcinomas compared with matched nonneoplastic lung tissues. Then, Ahnak -/- mice were used to investigate the role of AHNAK in pulmonary tumorigenesis. Ahnak -/- mice showed increased lung volume and thicker alveolar walls with type II pneumocyte hyperplasia. Most importantly, approximately 20% of aged Ahnak -/- mice developed lung tumors, and Ahnak -/- mice were more susceptible to urethane-induced pulmonary carcinogenesis than wild-type mice. Mechanistically, Ahnak deficiency promotes the cell growth of lung epithelial cells by suppressing the TGFß signaling pathway. In addition, increased numbers of M2-like alveolar macrophages (AM) were observed in Ahnak -/- lungs, and the depletion of AMs in Ahnak -/- lungs alleviated lung hyperplastic lesions, suggesting that M2-like AMs promoted the progression of lung hyperplastic lesions in Ahnak-null mice. Collectively, AHNAK suppresses type II pneumocyte proliferation and inhibits tumor-promoting M2 alternative activation of macrophages in mouse lung tissue. These results suggest that AHNAK functions as a novel tumor suppressor in lung cancer.Implications: The tumor suppressor function of AHNAK, in murine lungs, occurs by suppressing alveolar epithelial cell proliferation and modulating lung microenvironment. Mol Cancer Res; 16(8); 1287-98. ©2018 AACR.


Subject(s)
Alveolar Epithelial Cells/metabolism , Hyperplasia/metabolism , Lung Neoplasms/genetics , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Animals , Disease Models, Animal , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...