Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Transl Med ; 20(1): 224, 2022 05 14.
Article in English | MEDLINE | ID: mdl-35568952

ABSTRACT

BACKGROUND: Extracellular vesicle (EV)-microRNAs (miRNAs) are potential biomarkers for various renal diseases. This study attempted to identify the circulating EV-miRNA signature not only for discriminating idiopathic membranous nephropathy (IMN) from idiopathic nephrotic syndrome (INS), but also to predict the treatment response of patients with IMN. METHODS: We prospectively enrolled 60 participants, including those with IMN (n = 19) and INS (n = 21) and healthy volunteers (HVs; n = 20) in this study. Using RNA sequencing, we assessed the serum EV-miRNA profiles of all participants. To identify the EV-miRNAs predictive of treatment response in IMN, we also analyzed EV-miRNAs among patients with IMN with and without clinical remission. RESULTS: The expression levels of 3 miRNAs differed between IMN patients, INS patients and HVs. In addition, compared to HVs, RNA sequencing revealed differential expression of 77 and 44 EV-miRNAs in patients with IMN without and with remission, respectively. We also identified statistically significant (|fold change ≥ 2, p < 0.05) differences in the expression levels of 23 miRNAs in IMN without remission. Biological pathway analysis of miRNAs in IMN without remission indicated that they are likely involved in various pathways, including renal fibrosis. CONCLUSION: Our study identified EV-miRNAs associated with IMN as well as those associations with therapeutic response. Therefore, these circulating EV-miRNAs may be used as potential markers for the diagnosis and prediction of treatment response in patients with IMN.


Subject(s)
Circulating MicroRNA , Extracellular Vesicles , Glomerulonephritis, Membranous , MicroRNAs , Biomarkers/metabolism , Extracellular Vesicles/metabolism , Female , Glomerulonephritis, Membranous/genetics , Humans , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Nephrotic Syndrome
2.
Obes Facts ; 15(2): 292-301, 2022.
Article in English | MEDLINE | ID: mdl-35008090

ABSTRACT

INTRODUCTION: Various kidney diseases reportedly show different urinary extracellular vesicle (EV) RNA profiles. Although obesity is one of the main causes of chronic kidney disease, the expression pattern of urinary EV RNA in obesity is uncertain. Our aim was to sequence the small RNA profiles of urinary EVs in obese patients before and after weight reduction and compare them to those of healthy volunteers (HVs). METHODS: We recruited age-sex-matched obese patients and HVs. The small RNA profiles of urinary EVs were analyzed using RNA sequencing. To evaluate the effect of weight reduction, small RNA profiles of urinary EVs 6 months after bariatric surgery were also analyzed. RESULTS: The proportion of urinary EVs transfer RNA and microRNA of obese patients differed from that of HVs. Obese patients showed differential expression of 1,343 small RNAs in urinary EVs compared to HVs (fold change ≥2 and p value <0.05). Among those, 61 small RNAs were upregulated in obese patients and downregulated after weight reduction, whereas 167 small RNAs were downregulated in obese patients and upregulated after weight reduction. RNA sequencing revealed the correlation between the specific urinary EV small RNAs and clinical parameters including body weight, low-density lipoprotein cholesterol, triglyceride, high-density lipoprotein cholesterol, serum glucose, estimated glomerular filtration rate, and albuminuria. CONCLUSION: Obese patients showed distinct urinary EV small RNA profiles compared to HVs. Weight reduction altered urinary EV small-RNA profiles in obese patients.


Subject(s)
Extracellular Vesicles , MicroRNAs , Cholesterol/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Humans , MicroRNAs/metabolism , Obesity/complications , Obesity/metabolism , Weight Loss
4.
Endocrinol Metab (Seoul) ; 36(3): 637-646, 2021 06.
Article in English | MEDLINE | ID: mdl-34074095

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a progressive metabolic disease. Early detection of prediabetes is important to reduce the risk of T2DM. Some cytokines are known to be associated with T2DM. Therefore, we aimed to identify cytokines as novel biomarkers of glucose dysmetabolism. METHODS: The first stage of the study included 43 subjects (13 subjects with newly diagnosed T2DM, 13 with prediabetes, and 16 with normoglycemia) for cytokine microarray analysis. Blood samples of the subjects were assessed for 310 cytokines to identify potential indicators of prediabetes. The second stage included 142 subjects (36 subjects with T2DM, 35 with prediabetes, and 71 with normoglycemia) to validate the potential cytokines associated with prediabetes. RESULTS: We identified 41 cytokines that differed by 1.5-fold or more in at least one out of the three comparisons (normoglycemia vs. prediabetes, normoglycemia vs. T2DM, and prediabetes vs. T2DM) among 310 cytokines. Finally, we selected protein Z (PROZ) and validated this finding to determine its association with prediabetes. Plasma PROZ levels were found to be decreased in patients with prediabetes (1,490.32±367.19 pg/mL) and T2DM (1,583.34±465.43 pg/mL) compared to those in subjects with normoglycemia (1,864.07±450.83 pg/mL) (P<0.001). There were significantly negative correlations between PROZ and fasting plasma glucose (P=0.001) and hemoglobin A1c (P=0.010). CONCLUSION: PROZ levels were associated with prediabetes and T2DM. We suggest that PROZ may be a promising biomarker for the early detection of prediabetes. Further large-scale studies are needed to evaluate the relationship and mechanism between PROZ and prediabetes and T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Prediabetic State , Blood Proteins , Diabetes Mellitus, Type 2/diagnosis , Fasting , Glycated Hemoglobin/metabolism , Humans , Prediabetic State/diagnosis
5.
Article in English | MEDLINE | ID: mdl-32883688

ABSTRACT

INTRODUCTION: Obesity is a risk factor for type 2 diabetes mellitus (T2DM) and cardiovascular disease. T2DM increases the risk of cardiovascular-related death. We investigated changes in circulating exosomal microRNA (miRNA) profiles in patients with DM with obesity compared with patients without DM with obesity. RESEARCH DESIGN AND METHODS: This prospective study involved 29 patients with obesity (patients without DM=16, patients with DM=13) and healthy volunteers (HVs) (n=18). We measured circulating levels of exosomal miRNAs by next-generation sequencing and compared miRNA levels across the three groups. RESULTS: The expression levels of 25 miRNAs (upregulated=14, downregulated=11) differed between patients with obesity with DM and patients with obesity without DM. Compared with HV, patients with DM with obesity had 53 dysregulated miRNAs. Additionally, moving stepwise from HV to patients with obesity without DM to patients with obesity with DM, there was a consistent increase in expression levels of miR-23a-5p and miR-6087 and a consistent decrease in expressions levels of miR-6751-3p. CONCLUSIONS: Our data show that the exosomal miRNAs is altered by dysregulated glucose metabolism in patients with obesity. This circulating exosomal miRNA signature in patients with obesity with or without DM is a potential biomarker and therapeutic target in these patients.


Subject(s)
Diabetes Mellitus, Type 2 , MicroRNAs , Biomarkers , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Humans , MicroRNAs/genetics , Obesity/genetics , Prospective Studies
6.
Cells ; 9(6)2020 06 05.
Article in English | MEDLINE | ID: mdl-32517075

ABSTRACT

Tubular injury and fibrosis are associated with progressive kidney dysfunction in advanced glomerular disease. Glomerulotubular crosstalk is thought to contribute to tubular injury. microRNAs (miRNAs) in extracellular vesicles (EVs) can modulate distant cells. We hypothesized that miRNAs in EVs derived from injured podocytes lead to tubular epithelial cell damage. As proof of this concept, tubular epithelial (HK2) cells were cultured with exosomes from puromycin-treated or healthy human podocytes, and damage was assessed. Sequencing analysis revealed the miRNA repertoire of podocyte EVs. RNA sequencing identified 63 upregulated miRNAs in EVs from puromycin-treated podocytes. Among them, five miRNAs (miR-149, -424, -542, -582, and -874) were selected as candidates for inducing tubular apoptosis according to a literature-based search. To validate the effect of the miRNAs, HK2 cells were treated with miRNA mimics. EVs from injured podocytes induced apoptosis and p38 phosphorylation of HK2 cells. The miRNA-424 and 149 mimics led to apoptosis of HK2 cells. These results show that miRNAs in EVs from injured podocytes lead to damage to tubular epithelial cells, which may contribute to the development of tubular injury in glomerular disease.


Subject(s)
Apoptosis , Epithelial Cells/pathology , Extracellular Vesicles/metabolism , Kidney Tubules/pathology , MicroRNAs/metabolism , Podocytes/pathology , Cell Communication/genetics , Cell Line , Epithelial Cells/metabolism , Humans , MAP Kinase Signaling System/genetics , MicroRNAs/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Pharm Res ; 37(7): 126, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32529417

ABSTRACT

PURPOSE: Efficient and safe vehicle that can enhance gene transfer is still needed. Since intracellular cholesterol is known to have an important role in gene delivery and itraconazole alters intracellular cholesterol trafficking, we investigated the effect of itraconazole on pDNA and siRNA delivery. METHODS: The pDNA and Bcl2 siRNA transfection efficiency was measured by luciferase assay and cytotoxicity. Cellular cholesterol was observed using filipin staining, and intracellular uptake was analyzed by flow cytometry. Lipoplex localization was observed by fluorescent labeling of DNA and lysosome after treatment of itraconazole or co-treatment of itraconazole and bafilomycin A1. RESULTS: Itraconazole enhanced the transfection efficiency of pDNA and siRNA compared to that of control through the accumulation of cholesterol. Bafilomycin A1 diminished the effect of itraconazole on gene delivery and the increment of cholesterol. Itraconazole did not increase the cellular uptake of lipoplex, but increased free pDNA during the endosome-lysosome pathway was observed during the endosome-lysosome pathway. Treating cells with both imipramine and itraconazole caused an additive effect in pDNA and siRNA delivery. CONCLUSIONS: Itraconazole enhanced gene delivery of pDNA and siRNA, and it can be used to potentiate nucleic acid therapeutics.


Subject(s)
DNA/metabolism , Liposomes/chemistry , RNA, Small Interfering/metabolism , Transfection , Cell Line, Tumor , Cholesterol/metabolism , Endosomes/metabolism , Gene Expression Regulation , Gene Transfer Techniques , Genetic Therapy/methods , Humans , Itraconazole/metabolism , Lysosomes/metabolism , Macrolides/metabolism , Signal Transduction
8.
J Transl Med ; 17(1): 236, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31331349

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is associated with high risk of cardiovascular disease and mortality. Exosomal microRNAs (miRNAs) regulate gene expression in a variety of tissues and play important roles in the pathology of various diseases. We hypothesized that the exosomal miRNA profile would differ between DN patients and patients without nephropathy. METHODS: We prospectively enrolled 74 participants, including healthy volunteers (HVs), diabetic patients without nephropathy, and those with DN. The serum exosomal miRNA profiles of participants were examined using RNA sequencing. RESULTS: The expression levels of 107 miRNAs differed between HVs and patients without DN, whereas the expression levels of 95 miRNAs differed between HVs and patients with DN. Among these miRNAs, we found 7 miRNAs (miR-1246, miR-642a-3p, let-7c-5p, miR-1255b-5p, let-7i-3p, miR-5010-5p, miR-150-3p) that were uniquely up-regulated in DN patients compared to HVs, and miR-4449 that was highly expressed in DN patients compared to patients without DN. A pathway analysis revealed that these eight miRNAs are likely involved in MAPK signaling, integrin function in angiogenesis, and regulation of the AP-1 transcription factor. Moreover, they were all significantly correlated with the degree of albuminuria. CONCLUSIONS: Patients with DN have a different serum exosomal miRNA profile compared to HVs. These miRNAs may be promising candidates for the diagnosis and treatment of DN and cardiovascular disease.


Subject(s)
Albuminuria/blood , Circulating MicroRNA/blood , Diabetic Nephropathies/blood , Exosomes/metabolism , Adult , Aged , DNA, Complementary/metabolism , Female , Gene Expression Profiling , Gene Library , Humans , Male , Middle Aged , Prospective Studies , Sequence Analysis, RNA , Treatment Outcome
9.
Obesity (Silver Spring) ; 27(2): 264-271, 2019 02.
Article in English | MEDLINE | ID: mdl-30624857

ABSTRACT

OBJECTIVE: Exosomal microRNAs (miRNAs) are potential biomarkers for obesity, in which they regulate biological processes. Bariatric surgery has health benefits for patients with obesity; however, the mechanisms of these benefits are not clear. This study attempted to identify the exosomal miRNA signature associated with obesity and how it changed after bariatric surgery. METHODS: Healthy volunteers (HVs) and nondiabetic patients with obesity were prospectively enrolled in the study. The study assessed the serum exosomal miRNA profiles of HVs and patients with obesity using RNA sequencing. To evaluate the effects of bariatric surgery, the study also analyzed exosomal miRNAs in patients 6 months after surgery. RESULTS: RNA sequencing revealed differential expression of 72 exosomal miRNAs in patients with obesity compared with HVs and differential expression of 41 miRNAs in post- versus presurgery blood. Among the differentially expressed miRNAs, the study identified nine surgery-responsive miRNAs that were highly expressed in patients before surgery compared with HVs. Biological pathway analysis of the nine miRNAs indicated that they are likely involved in WNT, neurotrophin, and insulin signaling; the insulin receptor signaling cascade; and focal adhesion. CONCLUSIONS: Patients with obesity have a distinct exosomal miRNA expression profile compared with HVs. In addition, weight loss after surgery alters the exosomal miRNA profile of patients with obesity.


Subject(s)
Bariatric Surgery/methods , Exosomes/genetics , MicroRNAs/genetics , Obesity/genetics , Adult , Female , Healthy Volunteers , Humans , Male , Middle Aged , Prospective Studies
10.
J Gerontol A Biol Sci Med Sci ; 74(9): 1359-1367, 2019 08 16.
Article in English | MEDLINE | ID: mdl-30239625

ABSTRACT

Senescent cells accumulate in various tissues over time and contribute to tissue dysfunction and aging-associated phenotypes. Accumulating evidence suggests that cellular senescence can be inhibited through pharmacological intervention, as well as through treatment with soluble factors derived from embryonic stem cells (ESCs). In an attempt to investigate the anti-senescence factors secreted by ESCs, we analyzed mouse ESC-derived extracellular microRNAs in conditioned medium via microRNA array analysis. We selected mmu-miR-291a-3p as a putative anti-senescence factor via bioinformatics analysis. We validated its inhibitory effects on replicative, Adriamycin-induced, and ionizing radiation-induced senescence in human dermal fibroblasts. Treatment of senescent cells with mmu-miR-291a-3p decreased senescence-associated ß-galactosidase activity, enhanced proliferative potential, and reduced mRNA and protein expression of TGF-ß receptor 2, p53, and p21. mmu-miR-291a-3p in conditioned medium was enclosed in ESC-derived exosomes and exosomes purified from ESC conditioned medium inhibited cellular senescence. The inhibitory effects of mmu-miR-291a-3p were mediated through the TGF-ß receptor 2 signaling pathway. Hsa-miR-371a-3p and hsa-miR-520e, the human homologs of mmu-miR-291a-3p, showed similar anti-senescence activity. Furthermore, mmu-miR-291a-3p accelerated the excisional skin wound healing process in aged mice. Our results indicate that the ESC-derived mmu-miR-291a-3p is a novel candidate agent that can be utilized for cell-free therapeutic intervention against aging and aging-related diseases.


Subject(s)
Cellular Senescence/physiology , Embryonic Stem Cells/physiology , Fibroblasts/physiology , Receptors, Transforming Growth Factor beta/physiology , Animals , Female , Humans , Mice , Signal Transduction
11.
Oncogenesis ; 7(11): 85, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30420637

ABSTRACT

Thyroid cancer is the fifth most common cancer diagnosed in women worldwide. Notwithstanding advancements in the prognosis and treatment of thyroid cancer, 10-20% of thyroid cancer patients develops chemotherapeutic resistance and experience relapse. According to previous reports and TCGA database, MUC15 (MUCIN 15) upregulation is highly correlated with thyroid cancer progression. However, the role of MUC15 in tumor progression and metastasis is unclear. This study aimed to investigate factors mediating cancer stemness in thyroid cancer. MUC15 plays an important role in sphere formation, as an evident from the expression of stemness markers including SOX2, KLF4, ALDH1A3, and IL6. Furthermore, ectopic expression of MUC15 activated extracellular signal-regulated kinase (ERK) signaling via G-protein-coupled receptor (GPCR)/cyclic AMP (cAMP) and integrin/focal adhesion kinase pathways. Interestingly, ectopic expression of MUC15 did not affect RAF/mitogen-activated protein kinase kinase (MEK)-mediated ERK activation. The present findings may provide novel insights into the development of diagnostic, prognostic, and therapeutic applications of MUC15 in thyroid cancer.

12.
RNA Biol ; 15(6): 763-772, 2018.
Article in English | MEDLINE | ID: mdl-29638187

ABSTRACT

Techniques to isolate the small RNA fraction (<200nt) by column-based methods are commercially available. However, their use is limited because of the relatively high cost. We found that large RNA molecules, including mRNAs and rRNAs, are aggregated together in the presence of salts when RNA pellets are over-dried. Moreover, once RNA pellets are over-dried, large RNA molecules are barely soluble again during the elution process, whereas small RNA molecules (<100nt) can be eluted. We therefore modified the acid guanidinium thiocyanate-phenol-chloroform (AGPC)-based RNA extraction protocol by skipping the 70% ethanol washing step and over-drying the RNA pellet for 1 hour at room temperature. We named this novel small RNA isolation method "mirRICH." The quality of the small RNA sequences was validated by electrophoresis, next-generation sequencing, and quantitative PCR, and the findings support that our newly developed column-free method can successfully and efficiently isolate small RNAs from over-dried RNA pellets.


Subject(s)
RNA/chemistry , RNA/isolation & purification , Humans , MCF-7 Cells
13.
J Vis Exp ; (119)2017 01 08.
Article in English | MEDLINE | ID: mdl-28117789

ABSTRACT

The capacity of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to generate various cell types has opened new avenues in the field of regenerative medicine. However, despite their benefits, the tumorigenic potential of ESCs and iPSCs has long been a barrier for clinical applications. Interestingly, it has been shown that ESCs produce several soluble factors that can promote tissue regeneration and delay cellular aging, suggesting that ESCs and iPSCs can also be utilized as a cell-free intervention method. Therefore, the method for harvesting mouse embryonic stem cell (mESC)-conditioned medium (mESC-CM) with minimal contamination of serum components (fetal bovine serum, FBS) and feeder cells (mouse embryonic fibroblasts, MEFs) has been highly demanded. Here, the present study demonstrates an optimized method for the collection of mESC-CM under serum- and feeder-free conditions and for the characterization of mESC-CM using senescence-associated multiple readouts. This protocol will provide a method to collect pure mESC-specific secretory factors without serum and feeder contamination.


Subject(s)
Cellular Senescence/drug effects , Culture Media, Conditioned/pharmacology , Culture Media, Serum-Free/pharmacology , Mouse Embryonic Stem Cells/cytology , Animals , Cell Culture Techniques , Cell Differentiation/drug effects , Cells, Cultured , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism
14.
Biochim Biophys Acta ; 1858(12): 3017-3023, 2016 12.
Article in English | MEDLINE | ID: mdl-27664498

ABSTRACT

Cholesterol is an important cell membrane component and has been used as co-lipid for cationic liposome to enhance gene delivery. However, the role of cholesterol in transfection efficiency has not been fully understood. In this study, transfection efficiency of liposome was measured after cholesterol was added to the cell culture medium. As a result, addition of cholesterol increased transfection efficiency of several liposomes consisting of different lipid components in various cells (AGS, CHO, COS7 and, MCF7). Furthermore, treatment of cells with cholesterol modulating drugs, imipramine and U18666A, also increased transfection efficiency of liposomes. To elucidate the role of added cholesterol in gene transfer, endocytotic mechanism was studied and also revealed that adding cholesterol in culture media induced participation of caveolae-mediated endocytosis and micropinocytosis in CHO cell. Therefore, the results of this work suggest that modulation of intracellular cholesterol can be an important method to enhance gene delivery.


Subject(s)
Cholesterol/pharmacology , Gene Transfer Techniques , Liposomes/metabolism , Androstenes/pharmacology , Animals , CHO Cells , COS Cells , Cholesterol/metabolism , Cricetulus , Endocytosis , Humans , Imipramine/pharmacology
15.
FASEB J ; 30(3): 1276-86, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26675707

ABSTRACT

Cellular senescence, an irreversible state of growth arrest, underlies organismal aging and age-related diseases. Recent evidence suggests that aging intervention based on inhibition of cellular senescence might be a promising strategy for treatment of aging and age-related diseases. Embryonic stem cells (ESCs) and ESC conditioned medium (CM) have been suggested as a desirable source for regenerative medicine. However, effects of ESC-CM on cellular senescence remain to be determined. We found that treatment of senescent human dermal fibroblasts with CM from mouse ESCs (mESCs) decreases senescence phenotypes. We found that platelet-derived growth factor BB in mESC-CM plays a critical role in antisenescence effect of mESC-CM through up-regulation of fibroblast growth factor 2. We confirmed that mESC-CM treatment accelerates the wound-healing process by down-regulating senescence-associated p53 expression in in vivo models. Taken together, our results suggest that mESC-CM has the ability to suppress cellular senescence and maintain proliferative capacity. Therefore, this strategy might emerge as a novel therapeutic strategy for aging and age-related diseases.


Subject(s)
Cellular Senescence/drug effects , Culture Media, Conditioned/pharmacology , Fibroblast Growth Factor 2/metabolism , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Proto-Oncogene Proteins c-sis/metabolism , Signal Transduction/drug effects , Animals , Becaplermin , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Down-Regulation/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Mice , Tumor Suppressor Protein p53/metabolism , Up-Regulation/drug effects
16.
Int J Mol Sci ; 15(5): 7293-312, 2014 Apr 28.
Article in English | MEDLINE | ID: mdl-24786091

ABSTRACT

Cationic liposomes are broadly used as non-viral vectors to deliver genetic materials that can be used to treat various diseases including cancer. To circumvent problems associated with cationic liposome-mediated delivery systems such as low transfection efficiency and serum-induced inhibition, cholesterol-based cationic lipids have been synthesized that resist the effects of serum. The introduction of an ether-type linkage and extension of the aminopropyl head group on the cholesterol backbone increased the transfection efficiency and DNA binding affinity compared to a carbamoyl-type linkage and a mono aminopropyl head group, respectively. Under optimal conditions, each liposome formulation showed higher transfection efficiency in AGS and Huh-7 cells than commercially available cationic liposomes, particularly in the presence of serum. The following molecular structures were found to have a positive effect on transfection properties: (i) extended aminopropyl head groups for a strong binding affinity to plasmid DNA; (ii) an ether linkage that favors electrostatic binding to plasmid DNA; and (iii) a cholesterol backbone for serum resistance.


Subject(s)
Cholesterol/analogs & derivatives , DNA/administration & dosage , Plasmids/administration & dosage , Transfection , Animals , COS Cells , Cations/chemistry , Cell Line , Chlorocebus aethiops , DNA/genetics , Humans , Liposomes/chemistry , Plasmids/genetics
17.
Mol Pharm ; 9(12): 3579-85, 2012 Dec 03.
Article in English | MEDLINE | ID: mdl-23136813

ABSTRACT

Cholesterol-based cationic lipids have been widely used because of biocompatibility and serum resistance. However, the reason for the effectiveness of cholesterol-based cationic lipids remains unclear. We compared the transfection route of CHOL-E, a cholesterol-based cationic lipid having an amine head and an ether linker, with that of DOTAP. The luciferase assay with chemical inhibitors and microscopic observation of pathway markers revealed that clathrin mediated endocytosis is the main pathway for CHOL-E and DOTAP. However, CHOL-E showed resistance to cholesterol depletion by methyl-ß-cyclodextrin. Furthermore, CHOL-E recovered the transfection efficiency of DOTAP from cholesterol depletion. These results suggested that superior transfection of CHOL-E might be partly derived from effects on the cell membrane.


Subject(s)
Cations/metabolism , Cholesterol/metabolism , Drug Delivery Systems , Endocytosis/physiology , Fatty Acids, Monounsaturated/metabolism , Membrane Lipids/metabolism , Quaternary Ammonium Compounds/metabolism , beta-Cyclodextrins/metabolism , Animals , COS Cells , Cell Membrane/metabolism , Chlorocebus aethiops , Gene Transfer Techniques , Genetic Therapy
18.
Bioorg Med Chem Lett ; 21(12): 3734-7, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21570841

ABSTRACT

Five cholesterol-based cationic lipids were newly synthesized based on cholest-5-en-3ß-oxyethane-N,N,N-trimethylammonium bromide (Chol-ETA) structure where the cholesterol backbone is linked to cationic head via various lengths of ether-linked carbon spacer. The transfection efficiency of these compounds was increased in order of three (Chol-PRO)

Subject(s)
Cations , Cholesterol/chemistry , Lipids/chemistry , Methylamines/chemistry , Animals , COS Cells , Chlorocebus aethiops , Cholesterol/chemical synthesis , Lipids/chemical synthesis , Methylamines/chemical synthesis , Molecular Structure , Structure-Activity Relationship , Transfection/methods
19.
J Microbiol Biotechnol ; 21(1): 93-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21301198

ABSTRACT

Amongst a number of potential nonviral vectors, cationic liposomes have been actively researched, with both gemini surfactants and bola amphiphiles reported as being in possession of good structures in terms of cell viability and in vitro transfection. In this study, a cholesterol-based diquaternary ammonium gemini surfactant (Chol-GS) was synthesized and assessed as a novel nonviral gene vector. Chol-GS was synthesized from cholesterol by way of four reaction steps. The optimal efficiency was found to be at a weight ratio of 1:4 of lipid:DOPE (1,2-dioleoyl-L-alpha- glycero-3-phosphatidylethanolamine), and at a ratio of between 10:1~15:1 of liposome:DNA. The transfection efficiency was compared with commercial liposomes and with Lipofectamine, 1,2-dimyristyloxypropyl-3-dimethylhydroxyethylammonium bromide (DMRIE-C), and N-[1-(2,3-dioleoyloxy)propyl]- N,N,N-trimethylammonium chloride (DOTAP). The results indicate that the efficiency of Chol-GS is greater than that of all the tested commercial liposomes in COS7 and Huh7 cells, and higher than DOTAP and Lipofectamine in A549 cells. Confirmation of these findings was observed through the use of green fluorescent protein expression. Chol-GS exhibited a moderate level of cytotoxicity, at optimum concentrations for efficient transfection, indicating cell viability. Hence, the newly synthesized Chol-GS liposome has the potential of being an excellent nonviral vector for gene delivery.


Subject(s)
Cholesterol/chemistry , Gene Transfer Techniques/instrumentation , Liposomes/chemical synthesis , Quaternary Ammonium Compounds/chemical synthesis , Surface-Active Agents/chemical synthesis , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Humans
20.
Int J Mol Med ; 25(1): 113-20, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19956909

ABSTRACT

In the present study, single-stranded large circular (LC)-sense molecules were utilized as probes for DNA microarrays and showed stronger binding signals than those of PCR-amplified cDNA probes. A microarray experiment using 284 LC-sense DNA probes found 6 upregulated and 7 downregulated genes in A549 cells as compared to WI38VA13 cells. Repeated experiments showed largely consistent results, and microarray data strongly correlated with data acquired from quantitative real-time RT-PCR. A large array comprising 5,079 LC-sense DNA was prepared, and analysis of the mean differential expression from dye-swap experiments revealed 332 upregulated and 509 downregulated genes in A549 cells compared to WI38VA13 cells. Subsequent functional analysis using an LC-antisense library of overexpressed genes identified 28 genes involved in A549 cell growth. These experiments demonstrated the proper features of LC-sense molecules as probe DNA for microarray and the potential utility of the combination of LC-sense and -antisense libraries for an effective functional validation of genes.


Subject(s)
DNA, Antisense/genetics , DNA, Single-Stranded/genetics , Gene Expression Profiling/methods , Lung Neoplasms/genetics , Oligonucleotide Array Sequence Analysis/methods , Cell Line, Transformed , Cell Line, Tumor , Cell Proliferation , DNA, Complementary/genetics , Gene Expression Profiling/economics , Gene Expression Regulation, Neoplastic , Humans , Oligonucleotide Array Sequence Analysis/economics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...