Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 290(11): 2968-2992, 2023 06.
Article in English | MEDLINE | ID: mdl-36629470

ABSTRACT

Cyclic di-AMP is an essential signalling molecule in Gram-positive bacteria. This second messenger regulates the osmotic pressure of the cell by interacting directly with the regulatory domains, either RCK_C or CBS domains, of several potassium and osmolyte uptake membrane protein systems. Cyclic di-AMP also targets stand-alone CBS domain proteins such as DarB in Bacillus subtilis and CbpB in Listeria monocytogenes. We show here that the CbpB protein of Group B Streptococcus binds c-di-AMP with a very high affinity. Crystal structures of CbpB reveal the determinants of binding specificity and significant conformational changes occurring upon c-di-AMP binding. Deletion of the cbpB gene alters bacterial growth in low potassium conditions most likely due to a decrease in the amount of ppGpp caused by a loss of interaction between CbpB and Rel, the GTP/GDP pyrophosphokinase.


Subject(s)
Carrier Proteins , Streptococcus agalactiae , Streptococcus agalactiae/genetics , Streptococcus agalactiae/metabolism , Guanosine Pentaphosphate , Guanosine Tetraphosphate , Bacterial Proteins/metabolism , Cyclic AMP , Dinucleoside Phosphates/metabolism , Potassium/metabolism
2.
Front Microbiol ; 13: 1046388, 2022.
Article in English | MEDLINE | ID: mdl-36419420

ABSTRACT

Prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated genes) systems provide immunity against invading genetic elements such as bacteriophages and plasmids. In type III CRISPR systems, the recognition of target RNA leads to the synthesis of cyclic oligoadenylate (cOA) second messengers that activate ancillary effector proteins via their CRISPR-associated Rossmann fold (CARF) domains. Commonly, these are ribonucleases (RNases) that unspecifically degrade both invader and host RNA. To mitigate adverse effects on cell growth, ring nucleases can degrade extant cOAs to switch off ancillary nucleases. Here we show that the model organism Synechocystis sp. PCC 6803 harbors functional CARF-domain effector and ring nuclease proteins. We purified and characterized the two ancillary CARF-domain proteins from the III-D type CRISPR system of this cyanobacterium. The Csx1 homolog, SyCsx1, is a cyclic tetraadenylate(cA4)-dependent RNase with a strict specificity for cytosine nucleotides. The second CARF-domain protein with similarity to Csm6 effectors, SyCsm6, did not show RNase activity in vitro but was able to break down cOAs and attenuate SyCsx1 RNase activity. Our data suggest that the CRISPR systems in Synechocystis confer a multilayered cA4-mediated defense mechanism.

3.
Sci Transl Med ; 14(639): eabe5795, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35385339

ABSTRACT

Fibrosis contributes to ~45% of deaths in western countries. In chronic liver disease, fibrosis is a major factor determining outcomes, but efficient antifibrotic therapies are lacking. Although platelet-derived growth factor and transforming growth factor-ß constitute key fibrogenic mediators, they do not account for the well-established link between cell death and fibrosis in the liver. Here, we hypothesized that damage-associated molecular patterns (DAMPs) may link epithelial cell death to fibrogenesis in the injured liver. DAMP receptor screening identified purinergic receptor P2Y14 among several candidates as highly enriched in hepatic stellate cells (HSCs), the main fibrogenic cell type of the liver. Conversely, P2Y14 ligands uridine 5'-diphosphate (UDP)-glucose and UDP-galactose were enriched in hepatocytes and were released upon different modes of cell death. Accordingly, ligand-receptor interaction analysis that combined proteomic and single-cell RNA sequencing data revealed P2Y14 ligands and P2Y14 receptor as a link between dying cells and HSCs, respectively. Treatment with P2Y14 ligands or coculture with dying hepatocytes promoted HSC activation in a P2Y14-dependent manner. P2Y14 ligands activated extracellular signal-regulated kinase (ERK) and Yes-associated protein (YAP) signaling in HSCs, resulting in ERK-dependent HSC activation. Global and HSC-selective P2Y14 deficiency attenuated liver fibrosis in multiple mouse models of liver injury. Functional expression of P2Y14 was confirmed in healthy and diseased human liver and human HSCs. In conclusion, P2Y14 ligands and their receptor constitute a profibrogenic DAMP pathway that directly links cell death to fibrogenesis.


Subject(s)
Hepatic Stellate Cells , Hepatocytes , Receptors, Purinergic P2Y , Receptors, Purinergic P2 , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Hepatic Stellate Cells/metabolism , Hepatocytes/metabolism , Humans , Ligands , Liver/metabolism , Liver Cirrhosis/pathology , Mice , Proteomics , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2Y/metabolism , Single-Cell Analysis , Uridine Diphosphate/metabolism , YAP-Signaling Proteins
4.
Int J Oncol ; 47(1): 244-52, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25963929

ABSTRACT

Interaction between multi-functional mesenchymal stroma/stem cells (MSC) and human tumor cells involves the exchange of biological material via extracellular vesicles including exosomes. Protein analysis of MSC-derived exosomes demonstrated the presence of MMP-2 and MSC-specific markers including CD90 and ecto-5'-nucleotidase (CD73). Incubation of tumor cells with these membranous particles revealed a rapid uptake of MSC-released microvesicles whereby breast cancer cells incorporated ~19% and SCCOHT-1 cells representing a rare type of small cell ovarian cancer assimilated ~28% of available exosomes within 24 h. This interaction was accompanied by functional alterations of tumor cell properties during integration of exosomal content from MSC. Indeed, exosome-associated MMP-2 exhibited functional enzyme activity and MCF-7 breast cancer cells with undetectable MMP-2 protein acquired expression of this enzyme and corresponding gelatinase functionality after stimulation with MSC-derived exosomes. Similar effects were observed in SCCOHT-1 cells during culture in the presence of MSC-derived exosomes which enabled new metabolic activities in this tumor cell type. Together, these findings demonstrated that the internalization of MSC-derived exosomes was associated with the acquisition of new tumor cell properties by altering cellular functionalities and providing the capability to re-organize the tumor microenvironment.


Subject(s)
5'-Nucleotidase/metabolism , Breast Neoplasms/enzymology , Carcinoma, Small Cell/enzymology , Exosomes/metabolism , Matrix Metalloproteinase 2/metabolism , Mesenchymal Stem Cells/cytology , Ovarian Neoplasms/enzymology , 5'-Nucleotidase/genetics , Breast Neoplasms/genetics , Carcinoma, Small Cell/genetics , Cell Line, Tumor , Coculture Techniques , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Humans , MCF-7 Cells , Matrix Metalloproteinase 2/genetics , Ovarian Neoplasms/genetics , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...