Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(1): e23813, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38205338

ABSTRACT

The interaction between sulfasalazine (SSZ) through different functional groups and poly (lactic acid) (PLA) in the chloroform phase was investigated in this study using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The binding energy and thermodynamic parameters show that the hydrogen double bond interaction between SSZ and PLA in state I (-0.71 eV) is stronger than in states II (-0.64 eV) and III (-0.51 eV). The SSZ and PLA interaction results in an enhanced dipole moment, greater solubility, and more negative values for Gibbs free energy (ΔGsolv) and energy gap (Eg). Considerable changes in absorption peaks of SSZ and PLA indicate surface adsorption of the drug (SSZ) into the carrier (PLA) in UV-Vis spectra. Theoretical UV-Vis analysis demonstrates SSZ interaction with PLA happens in the ultraviolet region with a maximum absorption peak at 380 nm, which is close to experimental UV-Vis analysis. The experimental spectra showed minimal variations in the maximum absorption wavelength, with respect to theoretical calculations. The presence of SSZ was found to cause a modification in the structure of PLA, as evidenced by both experimental and theoretical Infrared (IR) spectra.

2.
Mol Divers ; 26(3): 1441-1454, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34304343

ABSTRACT

In this research we investigated the preparation of new (5Z, 8Z)-7H-pyrido[2,3-d]azepine derivatives in high yields via multicomponent reaction of isatins, alkyl bromides, activated acetylenic compounds and ammonium acetate using ionic liquid 1-octhyl-3-methyl imidazolium bromide ([OMIM]Br) as a stabilizer and soft template at room temperature in the presence of Fe3O4/TiO2/Carbon nanotubes magnetic nanocomposites as a reusable and effective nanocatalyst that are synthesized using ionic liquid [OMIM]Br as a stabilizer, soft template, green media and moderate base. Because of having a NH group in the synthesized pyridine derivatives, we investigate antioxidant property of some synthesized compounds by diphenyl-picrylhydrazine (DPPH) radical trapping and power of ferric reduction experiment. Short time of reaction, high yields of product, easy separation of catalyst and products are some advantages of this procedure.


Subject(s)
Ionic Liquids , Nanocomposites , Nanotubes, Carbon , Organometallic Compounds/chemistry , Azepines , Catalysis , Ferrosoferric Oxide , Magnetic Phenomena , Nanotubes, Carbon/chemistry , Titanium
3.
J Mol Model ; 19(1): 97-107, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22814795

ABSTRACT

We have analyzed the effect of external electric field on the zigzag (6,0) single-wall BC2N nanotube using density functional theory calculations. Analysis of the structural parameters indicates that the nanotube is resistant against the external electric field strengths. Analysis of the electronic structure of the nanotube indicates that the applied parallel electric field strengths have a much stronger interaction with the nanotube with respect to the transverse electric field strengths and the nanotube is easier to modulate by the applied parallel electric field. Our results show that the properties of the nanotube can be controlled by the proper external electric field for use in nano-electronic circuits.

4.
J Mol Model ; 19(2): 859-70, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23073700

ABSTRACT

The behavior of the carbon monoxide (CO) adsorbed on the external surface of H-capped (6,0) zigzag single-walled aluminum nitride nanotube (AlNNT) was studied using parallel and transverse electric field (strengths 0-140 × 10(-4) a.u.) and density functional calculations. The calculated adsorption energies of the CO/AlNNT complex increased with increasing parallel electric field intensity, whereas the adsorption energy values at the applied transverse electric field show a significant reverse trend. The calculated adsorption energies of the complex at the applied parallel electric field strengths increased gradually from -0.42 eV at zero field strength to -0.80 eV at a field strength of 140 × 10(-4) a.u. The considerable changes in the adsorption energies and energy gap values generated by the applied parallel electric field strengths show the high sensitivity of the electronic properties of AlNNT towards the adsorption of CO on its surface. Analysis of structural parameters indicates that the nanotube is resistant to external electric field strengths. The dipole moment variations in the complex show a significant change in the presence of parallel and transverse electric fields, which results in much stronger interactions at higher electric field strengths. Additionally, the natural bond orbital charges, quantum molecular descriptors, and molecular orbital energies of the complex show that the nanotube can absorb CO molecule in its pristine form at a high applied parallel electric field, and that the nanotube can be used as a CO storage medium.

5.
J Mol Model ; 19(2): 943-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23097002

ABSTRACT

Using density functional theory, we studied the adsorption of an N(2)O molecule onto pristine and Si-doped AlN nanotubes in terms of energetic, geometric, and electronic properties. The N(2)O is weakly adsorbed onto the pristine tube, releasing energies in the range of -1.1 to -5.7 kcal mol(-1). The electronic properties of the pristine tube are not influenced by the adsorption process. The N(2)O molecule is predicted to strongly interact with the Si-doped tube in such a way that its oxygen atom diffuses into the tube wall, releasing an N(2) molecule. The energy of this reaction is calculated to be about -103.6 kcal mol(-1), and the electronic properties of the Si-doped tube are slightly altered.

6.
J Mol Model ; 18(10): 4745-50, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22678082

ABSTRACT

Single-walled aluminum nitride nanotubes (AlNNTs) are introduced as an electronic sensor for detection of sulfur dioxide (SO2) molecules based on density functional theory calculations. The proposed sensor benefits from several advantages including high sensitivity: HOMO-LUMO energy gap of the AlNNT is appreciably sensitive toward the presence of SO2 so that it decreases from 4.11 eV in the pristine tube to 1.01 eV in the SO2-adsorbed form, pristine application: this nanotube can detect the SO2 molecule in its pristine type without manipulating its structure through doping, chemical functionalization, making defect, etc., short recovery time: the adsorption energy of SO2 molecule is not so large to hinder the recovery of AlNNTs and therefore the sensor will possess short recovery times, and good selectivity: the tube can selectively detect the SO2 molecule in the presence of several molecules such as H2O, CO, NH3, HCOH, CO2, N2, and H2.


Subject(s)
Aluminum Compounds/chemistry , Computer Simulation , Electrons , Nanotubes/chemistry , Sulfur Dioxide/analysis , Adsorption , Models, Molecular , Thermodynamics
7.
J Mol Model ; 18(9): 4477-89, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22643968

ABSTRACT

Structural, electronic, and electrical responses of the H-capped (6,0) zigzag single-walled aluminum nitride nanotube was studied under the parallel and transverse electric fields with strengths 0-140 × 10(-4) a.u. by using density functional calculations. Geometry optimizations were carried out at the B3LYP/6-31G* level of theory using a locally modified version of the GAMESS electronic structure program. The dipole moments, atomic charge variations, and total energy of the (6,0) zigzag AlNNT show increases with increase in the applied external electric field strengths. The length, tip diameters, electronic spatial extent, and molecular volume of the nanotube do not significantly change with increasing electric field strength. The energy gap of the nanotube decreases with increases of the electric field strength and its reactivity is increased. Increase of the ionization potential, electron affinity, chemical potential, electrophilicity, and HOMO and LUMO in the nanotube with increase of the applied parallel electric field strengths shows that the parallel field has a much stronger interaction with the nanotube with respect to the transverse electric field strengths. Analysis of the parameters indicates that the properties of AlNNTs can be controlled by the proper external electric field.


Subject(s)
Aluminum Compounds/chemistry , Electricity , Nanotubes, Carbon/chemistry , Electrons , Imaging, Three-Dimensional , Models, Molecular , Molecular Conformation , Quantum Theory
8.
J Mol Model ; 18(9): 4427-36, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22588584

ABSTRACT

Density functional theory (DFT) calculations were performed to investigate the electronic structure properties of pristine and Si-doped aluminum nitride nanotubes as n or P-semiconductors at the B3LYP/6-31G* level of theory in order to evaluate the influence of Si-doped in the (6,0) zigzag AlNNTs. We extended the DFT calculation to predict the electronic structure properties of Si-doped aluminum nitride nanotubes, which are very important for production of solid-state devices and other applications. To this aim, pristine and Si-doped AlNNT structures in two models (Si(N) and Si(Al)) were optimized, and then the electronic properties, the isotropic (CS(I)) and anisotropic (CS(A)) chemical shielding parameters for the sites of various (27)Al and (14)N atoms, NQR parameters for the sites of various of (27)Al and (14)N atoms, and quantum molecular descriptors were calculated in the optimized structures. The optimized structures, the electronic properties, NMR and NQR parameters, and quantum molecular descriptors for the Si(N) and Si(Al) models show that the Si(N) model is a more reactive material than the pristine or Si(Al) model.


Subject(s)
Aluminum Compounds/chemistry , Nanotubes/chemistry , Semiconductors , Silicon/chemistry , Aluminum/chemistry , Electrons , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Nitrogen/chemistry , Quantum Theory , Static Electricity
9.
J Mol Model ; 18(3): 881-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21625895

ABSTRACT

The structural properties, NMR and NQR parameters in the pristine and silicon carbide (SiC) doped boron phosphide nanotubes (BPNTs) were calculated using DFT methods (BLYP, B3LYP/6-31G) in order to evaluate the influence of SiC-doped on the (4,4) armchair BPNTs. Nuclear magnetic resonance (NMR) parameters including isotropic (CS(I)) and anisotropic (CS(A)) chemical shielding parameters for the sites of various (13)C, (29)Si, (11)B, and (31)P atoms and quadrupole coupling constant (C ( Q )), and asymmetry parameter (η ( Q )) at the sites of various (11)B nuclei were calculated in pristine and SiC- doped (4,4) armchair boron phosphide nanotubes models. The calculations indicated that doping of (11)B and (31)P atoms by C and Si atoms had a more significant influence on the calculated NMR and NQR parameters than did doping of the B and P atoms by Si and C atoms. In comparison with the pristine model, the SiC- doping in Si(P)C(B) model of the (4,4) armchair BPNTs reduces the energy gaps of the nanotubes and increases their electrical conductance. The NMR results showed that the B and P atoms which are directly bonded to the C atoms in the SiC-doped BPNTs have significant changes in the NMR parameters with respect to the B and P atoms which are directly bonded to the Si atoms in the SiC-doped BPNTs. The NQR results showed that in BPNTs, the B atoms at the edges of nanotubes play dominant roles in determining the electronic behaviors of BPNTs. Also, the NMR and NQR results detect that the Fig. 1b (Si(P)C(B)) model is a more reactive material than the pristine and the Fig. 1a (Si(B)C(p)) models of the (4,4) armchair BPNTs.


Subject(s)
Boron Compounds/chemistry , Carbon Compounds, Inorganic/chemistry , Magnetic Resonance Spectroscopy/methods , Nanotubes/chemistry , Silicon Compounds/chemistry , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...