Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 144(2): 1034-1044, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34985273

ABSTRACT

A new atomic-scale anisotropy in the photoreaction of surface carboxylates on rutile TiO2(110) induced by gold clusters is found. STM and DFT+U are used to study this phenomenon by monitoring the photoreaction of a prototype hole-scavenger molecule, benzoic acid, over stoichiometric (s) s-TiO2, Au9/s-TiO2, and reduced (r) Au9/r-TiO2. STM results show that benzoic acid adsorption displaces a large fraction of Au clusters from the terraces toward their edges. DFT calculations explain that Au9 clusters on stoichiometric TiO2 are distorted by benzoic acid adsorption. The influence of sub-monolayers of Au on the UV/visible photoreaction of benzoic acid was explored at room temperature, with adsorbate depletion taken as a measure of activity. The empty sites, observed upon photoexcitation, occurred in elongated chains (2 to 6 molecules long) in the [11̅0] and [001] directions. A roughly 3-fold higher depletion rate is observed in the [001] direction. This is linked to the anisotropic conduction of excited electrons along [001], with subsequent trapping by Au clusters leaving a higher concentration of holes and thus an increased decomposition rate. To our knowledge this is the first time that atomic-scale directionality of a chemical reaction is reported upon photoexcitation of the semiconductor.

SELECTION OF CITATIONS
SEARCH DETAIL
...