Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Biol Sci ; 20(2): 606-620, 2024.
Article in English | MEDLINE | ID: mdl-38169654

ABSTRACT

Dysregulation of liver sinusoidal endothelial cell (LSEC) differentiation and function has been reported in alcohol-associated liver disease (ALD). Impaired nitric oxide (NO) production stimulates LSEC capillarization and dysfunction; however, the mechanism underlying NO production remains unclear. Here, we investigated the role of thioredoxin-interacting protein (TXNIP), an important regulator of redox homeostasis, in endothelial cell NO production and its subsequent effects on ALD progression. We found that hepatic TXNIP expression was upregulated in patients with ALD and in ethanol diet-fed mice with high expression in LSECs. Endothelial cell-specific Txnip deficiency (TxnipΔEC) in mice exacerbated alcohol-induced liver injury, inflammation, fibrosis, and hepatocellular carcinoma development. Deletion of Txnip in LSECs led to sinusoidal capillarization, downregulation of NO production, and increased release of proinflammatory cytokines and adhesion molecules, whereas TXNIP overexpression had the opposite effects. Mechanistically, TXNIP interacted with transforming growth factor ß-activated kinase 1 (TAK1) and subsequently suppressed the TAK1 pathway. Inhibition of TAK1 activation restored NO production and decreased the levels of proinflammatory cytokines, thereby, blocking liver injury and inflammation in TxnipΔEC mice. Our findings indicate that upregulated TXNIP expression in LSECs serves a protective role in ameliorating ALD. Enhancing TXNIP expression could, therefore, be a potential therapeutic approach for ALD.


Subject(s)
Liver Diseases, Alcoholic , Nitric Oxide , Animals , Humans , Mice , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cytokines/metabolism , Endothelial Cells/metabolism , Inflammation/metabolism , Liver/metabolism , Liver Cirrhosis/metabolism , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Nitric Oxide/metabolism
2.
Sci Rep ; 13(1): 17555, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845356

ABSTRACT

Drug-induced liver injury (DILI) presents significant diagnostic challenges, and recently artificial intelligence-based deep learning technology has been used to predict various hepatic findings. In this study, we trained a set of Mask R-CNN-based deep algorithms to learn and quantify typical toxicant induced-histopathological lesions, portal area, and connective tissue in Sprague Dawley rats. We compared a set of single-finding models (SFMs) and a combined multiple-finding model (MFM) for their ability to simultaneously detect, classify, and quantify multiple hepatic findings on rat liver slide images. All of the SFMs yielded mean average precision (mAP) values above 85%, suggesting that the models had been successfully established. The MFM showed better performance than the SFMs, with a total mAP value of 92.46%. We compared the model predictions for slide images with ground-truth annotations generated by an accredited pathologist. For the MFM, the overall and individual finding predictions were highly correlated with the annotated areas, with R-squared values of 0.852, 0.952, 0.999, 0.990, and 0.958 being obtained for portal area, infiltration, necrosis, vacuolation, and connective tissue (including fibrosis), respectively. Our results indicate that the proposed MFM could be a useful tool for detecting and predicting multiple hepatic findings in basic non-clinical study settings.


Subject(s)
Chemical and Drug Induced Liver Injury , Deep Learning , Rats , Animals , Artificial Intelligence , Rats, Sprague-Dawley , Algorithms , Chemical and Drug Induced Liver Injury/diagnostic imaging
3.
J Toxicol Pathol ; 36(1): 21-30, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36683726

ABSTRACT

Recently, with the development of computer vision using artificial intelligence (AI), clinical research on diagnosis and prediction using medical image data has increased. In this study, we applied AI methods to analyze hepatic fibrosis in mice to determine whether an AI algorithm can be used to analyze lesions. Whole slide image (WSI) Sirius Red staining was used to examine hepatic fibrosis. The Xception network, an AI algorithm, was used to train normal and fibrotic lesion identification. We compared the results from two analyses, that is, pathologists' grades and researchers' annotations, to observe whether the automated algorithm can support toxicological pathologists efficiently as a new apparatus. The accuracies of the trained model computed from the training and validation datasets were greater than 99%, and that obtained by testing the model was 100%. In the comparison between analyses, all analyses showed significant differences in the results for each group. Furthermore, both normalized fibrosis grades inferred from the trained model annotated the fibrosis area, and the grades assigned by the pathologists showed significant correlations. Notably, the deep learning algorithm derived the highest correlation with the pathologists' average grade. Owing to the correlation outcomes, we conclude that the trained model might produce results comparable to those of the pathologists' grading of the Sirius Red-stained WSI fibrosis. This study illustrates that the deep learning algorithm can potentially be used for analyzing fibrotic lesions in combination with Sirius Red-stained WSIs as a second opinion tool in non-clinical research.

4.
Int Urol Nephrol ; 55(1): 17-28, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36107291

ABSTRACT

PURPOSE: Benign prostatic hyperplasia (BPH) is a urogenital disorder that affects approximately 85% of males who are over 50 years of age. Hydrocotyle ramiflora (HR), belonging to Apiaceae family, is used to treat urinary system diseases such as urine retention in traditional Chinese herbal medicine. In this study, we evaluated the effects of HR in the BPH animal model. METHODS: We induced BPH in rats via subcutaneous (sc) injections of testosterone propionate (TP, 3 mg/kg). Rats were also administered HR (150 mg/kg), finasteride (10 mg/kg), or vehicle via oral gavage. After induction, prostate glands were collected, weighed, and processed for further analysis, including histopathological examination and immunohistochemistry. In addition, the mRNA expression of inflammatory cytokines in prostatic tissues was determined by quantitative real-time PCR (qRT-PCR). The protein expression of pro-apoptotic markers was examined using western blotting. RESULTS: HR treatment significantly reduced the prostate weight, epithelial thickness, and proliferating cell nuclear antigen (PCNA) expression, with the levels of cleaved caspase-3 and Bcl-2-associated X (Bax) protein considerably increased compared to BPH group. HR also decreased inflammatory cell infiltration and pro-inflammatory cytokine levels compared with BPH group. Furthermore, the expression of phosphor-nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) were reduced by HR treatment. CONCLUSION: These results indicate that HR suppresses the development of BPH associated with anti-proliferative, pro-apoptotic, and anti-inflammatory effects, suggesting it is a potential alternative therapeutic agent for BPH.


Subject(s)
Centella , Prostatic Hyperplasia , Male , Humans , Rats , Animals , Prostatic Hyperplasia/chemically induced , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/metabolism , Testosterone/therapeutic use , Rats, Sprague-Dawley , Plant Extracts/adverse effects
5.
Pharm Biol ; 60(1): 2040-2048, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36267048

ABSTRACT

CONTEXT: Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease associated with respiratory symptoms and narrowing of airways. Gyeji-tang (GJT) is a traditional Asian medicine that has been used to relieve early-stage cold symptoms, headache, and chills. OBJECTIVE: We examined the effect and potential molecular action mechanism of GJT in a mouse model of COPD induced by cigarette smoke (CS) plus lipopolysaccharide (LPS). MATERIALS AND METHODS: COPD was induced in C57BL/6J mice via daily exposure to CS for 1 h for 8 weeks and intranasal administration of LPS on weeks 1, 3, 5, and 7. GJT (100 or 200 mg/kg) or roflumilast (5 mg/kg) was administrated daily for the final 4 weeks of COPD induction. RESULTS: Administration of GJT significantly suppressed the CS/LPS-induced increases in: the numbers of total cells and macrophages in bronchoalveolar lavage fluid; the expression levels of tumour necrosis factor-α, interleukin (IL)-6, IL-1ß, and IL-8; the activities (phosphorylation) of nuclear factor kappa B and signal transducer and activator of transcription 3; and the expression levels of the structural remodelling markers, transforming growth factor beta, matrix metallopeptidase (MMP)-7, and MMP-9. DISCUSSION AND CONCLUSIONS: These results demonstrate that GJT prevents the lung inflammation and airway remodelling induced by CS plus LPS exposure in mice, suggesting that GJT may have therapeutic potential for the treatment of COPD.


Subject(s)
Cigarette Smoking , Pulmonary Disease, Chronic Obstructive , Mice , Animals , Lipopolysaccharides/toxicity , Tumor Necrosis Factor-alpha/metabolism , STAT3 Transcription Factor/metabolism , NF-kappa B/metabolism , Matrix Metalloproteinase 9/metabolism , Interleukin-8/metabolism , Interleukin-8/pharmacology , Interleukin-8/therapeutic use , Mice, Inbred C57BL , Pulmonary Disease, Chronic Obstructive/chemically induced , Lung , Nicotiana , Disease Models, Animal , Anti-Inflammatory Agents/therapeutic use , Transforming Growth Factor beta/metabolism
6.
Res Rep Urol ; 14: 313-326, 2022.
Article in English | MEDLINE | ID: mdl-36187165

ABSTRACT

Introduction: Benign prostatic hyperplasia (BPH) is a non-neoplastic proliferative disease of the prostate. Eriochloa villosa (EV) reportedly possesses various pharmacological activities, including anti-lipase activity and modulation of various antioxidative enzymes. In this study, we investigate the therapeutic potential of EV against BPH in a testosterone-induced BPH rat model. Methods: Rats were subjected to a daily subcutaneous injection of testosterone (3 mg kg-1) for 4 weeks to induce BPH. Along with testosterone, rats in the treatment group were administered finasteride (10 mg kg-1) or EV (150 mg kg-1) via oral gavage. Prostatic cancer (LNCaP) cell line was used to examine the effect of EV. Results: Finasteride and EV significantly decrease the relative prostate weight, serum levels of dihydrotestosterone and testosterone, and prostate epithelial thickness. Testosterone injection induced prostatic hyperplasia and proliferating cell nuclear antigen expression; however, EV treatment significantly attenuated these effects. Moreover, finasteride- and EV-treated rats exhibit an increase in the number of TUNEL-positive cells and reduced Bcl-2 expression in the prostate tissues compared with the testosterone-treated animals. Furthermore, EV suppresses inflammatory cytokines, including interleukin (IL)-6 and IL-8, in the prostate tissues. Meanwhile, the expression of inflammatory mediator cyclooxygenase-2 is consistently upregulated in testosterone-treated rats, whereas EV treatment significantly reverses this effect. Notably, EV treatment suppresses malondialdehyde (MDA) levels and upregulates testosterone-induced catalase (CAT) expression. In addition, EV suppresses expression of androgen receptor (AR) and prostate-specific antigen (PSA) induced by testosterone in LNCaP cells. Conclusion: The present study results suggest that EV regulates prostatic proliferation, apoptosis, response to inflammation, and oxidative stress in the BPH rat model, and may, therefore, serve as a useful therapeutic agent for BPH.

7.
Diagnostics (Basel) ; 12(6)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35741291

ABSTRACT

Although drug-induced liver injury (DILI) is a major target of the pharmaceutical industry, we currently lack an efficient model for evaluating liver toxicity in the early stage of its development. Recent progress in artificial intelligence-based deep learning technology promises to improve the accuracy and robustness of current toxicity prediction models. Mask region-based CNN (Mask R-CNN) is a detection-based segmentation model that has been used for developing algorithms. In the present study, we applied a Mask R-CNN algorithm to detect and predict acute hepatic injury lesions induced by acetaminophen (APAP) in Sprague-Dawley rats. To accomplish this, we trained, validated, and tested the model for various hepatic lesions, including necrosis, inflammation, infiltration, and portal triad. We confirmed the model performance at the whole-slide image (WSI) level. The training, validating, and testing processes, which were performed using tile images, yielded an overall model accuracy of 96.44%. For confirmation, we compared the model's predictions for 25 WSIs at 20× magnification with annotated lesion areas determined by an accredited toxicologic pathologist. In individual WSIs, the expert-annotated lesion areas of necrosis, inflammation, and infiltration tended to be comparable with the values predicted by the algorithm. The overall predictions showed a high correlation with the annotated area. The R square values were 0.9953, 0.9610, and 0.9445 for necrosis, inflammation plus infiltration, and portal triad, respectively. The present study shows that the Mask R-CNN algorithm is a useful tool for detecting and predicting hepatic lesions in non-clinical studies. This new algorithm might be widely useful for predicting liver lesions in non-clinical and clinical settings.

8.
Article in English | MEDLINE | ID: mdl-35035511

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) refers to a lung disorder associated with symptoms of dyspnea, cough, and sputum production. Traditionally, Yijin-tang (YJT), a mixture of Pinellia ternate, Poria cocos, ginger, Chinese liquorice, and tangerine peel, has been prescribed for the treatment of respiratory system diseases caused by dampness phlegm. This experiment investigated the therapeutic effect of YJT in a mouse model of cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD. METHODS: COPD was induced by exposing mice to CS for 1 hour per day for 8 weeks, with intranasal delivery of LPS on weeks 1, 3, 5, and 7. YJT was administered at doses of 100 and 200 mg/kg 1 hour before CS exposure for the last 4 weeks. RESULTS: YJT significantly suppressed CS- and LPS-induced increases in inflammatory cell counts and reduced interleukin-1 beta (IL-1ß), IL-6, tumor necrosis factor-alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) levels in bronchoalveolar lavage fluid (BALF) and lung tissue. In addition, YJT not only decreased airway wall thickness, average alveolar intercept, and lung fibrosis, but it also suppressed the expression of matrix metallopeptidase (MMP)-7, MMP-9, and transforming growth factor-B (TGF-ß) and collagen deposition. Moreover, YJT suppressed phosphorylation of nuclear factor-kappa B (NF-κB) as well as expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). CONCLUSION: Collectively, our findings show that YJT attenuates respiratory inflammation and airway remodeling caused by CS and LPS exposure; therefore, therapeutic applications in COPD can be considered.

9.
BMC Complement Med Ther ; 21(1): 281, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34784929

ABSTRACT

BACKGROUND: Palmijihwanghwan (PJH) is a traditional medicine and eight constituents derived from PJH possess anti-inflammatory activities. However, the scientific evidence for its potential as a therapeutic agent for inflammatory lung disease has not yet been studied. In this study, we examined the protective effect of PJH in a mouse model of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke (CS) with lipopolysaccharide (LPS). METHODS: Mice received CS exposure for 8 weeks and intranasal instillation of LPS on weeks 1, 3, 5 and 7. PJH (100 and 200 mg/kg) was administrated daily 1 h before CS treatment for the last 4 weeks. RESULTS: Compared with CS plus LPS-exposed mice, mice in the PJH-treated group showed significantly decreased inflammatory cells count and reduced inflammatory cytokines including interleukin-1 beta (IL-1ß), IL-6 and tumor necrosis factor alpha (TNF-α) levels in broncho-alveolar lavage fluid (BALF) and lung tissue. PJH also suppressed the phosphorylation of nuclear factor kappa B (NF-κB) and extracellular signal-regulated kinase1/2 (ERK1/2) caused by CS plus LPS exposure. Furthermore, CS plus LPS induced increases in matrix metallopeptidase (MMP)-7, MMP-9, and transforming growth factor-ß (TGF-ß) expression and collagen deposition that were inhibited in PJH-treated mice. CONCLUSIONS: This study demonstrates that PJH prevents respiratory inflammation and airway remodeling caused by CS with LPS exposure suggesting potential therapy for the treatment of COPD.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Medicine, Chinese Traditional/methods , Plant Extracts/pharmacology , Pulmonary Disease, Chronic Obstructive/drug therapy , Animals , Disease Models, Animal , Lipopolysaccharides/adverse effects , Male , Mice , Mice, Inbred C57BL , Pulmonary Disease, Chronic Obstructive/etiology , Tobacco Smoke Pollution/adverse effects
10.
Article in English | MEDLINE | ID: mdl-34630623

ABSTRACT

The flavonoid myricetin is abundant in vegetables and has various bioactive properties, including anti-inflammatory and antioxidative activities. In the present study, we explored the effects of myricetin on alcohol-induced gastric ulcer in a rat model. To induce gastric ulcer, absolute ethanol (5 mL/kg body weight) was orally administrated to each rat. The positive control and myricetin-treated groups were given oral doses of omeprazole (20 mg/kg) or myricetin (12 mg/kg), respectively, 1 hour prior to the administration of absolute alcohol. We found that pretreatment with myricetin significantly decreased alcohol-induced gastric ulcer, hemorrhage, hyperemia, and epithelial cell loss in the gastric mucosa. Myricetin pretreatment reduced the level of malondialdehyde (MDA) and increased that of total glutathione (GSSG/GSH) and superoxide dismutase (SOD) in gastric tissues. In addition, it elevated the expression levels of cyclooxygenase-1 (COX-1) and prostaglandin E2 (PGE2) and decreased the phosphorylation of nuclear factor kappa B (NF-κB). Together, these results indicate that myricetin effectively inhibits ethanol-induced acute gastric injury by preventing oxidative damage, stimulating PGE2 production, and inhibiting NF-κB activation. We suggest that myricetin may be an alternative treatment for gastric injury caused by alcohol intake.

11.
Korean J Physiol Pharmacol ; 23(5): 329-334, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31496870

ABSTRACT

Diabetes is associated with an increased risk of cardiovascular complications. Dipeptidyl peptidase-4 (DPP-IV) inhibitors are used clinically to reduce high blood glucose levels as an antidiabetic agent. However, the effect of the DPP-IV inhibitor gemigliptin on ischemia/reperfusion (I/R)-induced myocardial injury and hypertension is unknown. In this study, we assessed the effects and mechanisms of gemigliptin in rat models of myocardial I/R injury and spontaneous hypertension. Gemigliptin (20 and 100 mg/kg/d) or vehicle was administered intragastrically to Sprague-Dawley rats for 4 weeks before induction of I/R injury. Gemigliptin exerted a preventive effect on I/R injury by improving hemodynamic function and reducing infarct size compared to the vehicle control group. Moreover, administration of gemigliptin (0.03% and 0.15%) powder in food for 4 weeks reversed hypertrophy and improved diastolic function in spontaneously hypertensive rats. We report here a novel effect of the gemigliptin on I/R injury and hypertension.

12.
Korean J Physiol Pharmacol ; 22(6): 713-719, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30402032

ABSTRACT

Dipeptidyl peptidase4 (DPP4) inhibitors such as gemigliptin are anti-diabetic drugs elevating plasma concentration of incretins such as GLP-1. In addition to the DPP4 inhibition, gemigliptin might directly improve the functions of vessels under pathological conditions. To test this hypothesis, we investigated whether the acetylcholine-induced endothelium dependent relaxation (ACh-EDR) of mesenteric arteries (MA) are altered by gemigliptin pretreatment in Spontaneous Hypertensive Rats (SHR) and in Wistar-Kyoto rats (WKY) under hyperglycemia-like conditions (HG; 2 hr incubation with 50 mM glucose). ACh-EDR of WKY was reduced by the HG condition, which was significantly recovered by 1 µM gemigliptin while not by saxagliptin and sitagliptin up to 10 µM. The ACh-EDR of SHR MA was also improved by 1 µM gemigliptin while similar recovery was observed with higher concentration (10 µM) of saxagliptin and sitagliptin. The facilitation of ACh-EDR by gemigliptin in SHR was not observed under pretreatment with NOS inhibitor, L-NAME. In the endotheliumdenuded MA of SHR, sodium nitroprusside induced dose-dependent relaxation was not affected by gemigliptin. The ACh-EDR in WKY was decreased by treatment with 30 µM pyrogallol, a superoxide generator, which was not prevented by gemigliptin. Exendin-4, a GLP-1 analogue, could not enhance the ACh-EDR in SHR MA. The present results of ex vivo study suggest that gemigliptin enhances the NOS-mediated EDR of the HG-treated MA as well as the MA from SHR via GLP-1 receptor independent mechanism.

13.
J Smooth Muscle Res ; 47(2): 55-65, 2011.
Article in English | MEDLINE | ID: mdl-21757855

ABSTRACT

In many organs, blood flow is maintained at a relatively constant level although pressure changes substantially. This autoregulation of blood flow is achieved in several ways including the myogenic response (MR). MR is triggered by mechanical stretch of vascular smooth muscle. Activation of stretch activated channels (SACs) on vascular smooth muscle cells induces depolarization, Ca(2+) influx and myogenic constriction. Non-selective cation channel, epithelial Na(+) channel, chloride channel and potassium channel have been suggested as a molecular candidate of SAC. Additionally, activation of protein kinase C (PKC) and Rho-A kinase (ROK) contribute to MR without alteration of intracellular Ca(2+). These complex interactions of Ca(2+)-dependent and Ca(2+)-sensitizing signals seem to be variable depending on the types of arteries as well as animal species. Finally, impaired MRs are related in various pathological conditions, such as hypertension, stroke and diabetes mellitus. Therefore, identification of MR signaling mechanism might be a target of treatment in vascular diseases.


Subject(s)
Calcium Signaling/physiology , Calcium/physiology , Muscle, Smooth, Vascular/physiology , Signal Transduction/drug effects , Animals , Ion Channels/physiology , Protein Kinase C/metabolism , Stress, Mechanical , rho-Associated Kinases/metabolism
14.
Pflugers Arch ; 460(1): 19-29, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20174820

ABSTRACT

Mechanosensitive nonselective cation channels (NSC(ms)), protein kinase C (PKC), and Rho kinase (ROCK) are suggested as underlying mechanisms for the myogenic contractile response (MR) to luminal pressure (P(lum)). Here we compared relative contributions from these mechanisms using pharmacological inhibitors in rabbit middle cerebral (RbCA), rat middle cerebral (RtCA), rat femoral (RtFA), and rat mesenteric (RtMA) small arteries. Inner diameters of pressurized arteries under various P(lum) were video-analyzed. 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS, 10 microM) was used as a blocker of NSC(ms). In general, RbCA and RtCA showed higher P(lum) sensitivity of MR than RtFA and RtMA. Ten micromolars of DIDS commonly decreased MRs more effectively at low P(lum) (40-60 mmHg) in all tested arteries except RtCA. In RbCA, PKC inhibitors (100 nM of Go6976 or Go6983) decreased the MR at relatively high P(lum) (80-100 mmHg) whereas ROCK inhibitor (Y-27632, 1 microM) showed a P(lum)-independent inhibition. In RtMA and RtCA, PKC inhibitors (Go6976 and Go6983) had no significant effect whereas Y-27632 generally inhibited the MR. In RtFA, neither PKC inhibitor nor Y-27632 alone affected MRs. Interestingly, in the presence of 10 microM DIDS, Go6983 and Y-27632 decreased the MR of RtFA. In RtMA, it was notable that the MR decreased spontaneously on repeated protocol of P(lum) increase, and the 'run-down' could be effective reversed by maxi-K(+) channel blocker (tetraethylammonium or iberiotoxin). In summary, our study shows the variability of MRs according to the arterial types in terms of their pressure sensitivity and underlying mechanisms that are recruited according to P(lum).


Subject(s)
Arteries/metabolism , Ion Channels/metabolism , Mechanotransduction, Cellular , Protein Kinase C/metabolism , Vasoconstriction , rho-Associated Kinases/metabolism , Animals , Arteries/drug effects , Arteries/enzymology , Cations , Dose-Response Relationship, Drug , Femoral Artery/metabolism , In Vitro Techniques , Ion Channels/antagonists & inhibitors , Male , Mechanotransduction, Cellular/drug effects , Membrane Transport Modulators/pharmacology , Mesenteric Arteries/metabolism , Middle Cerebral Artery/metabolism , Pressure , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Rabbits , Rats , Rats, Sprague-Dawley , Time Factors , Vasoconstriction/drug effects , rho-Associated Kinases/antagonists & inhibitors
15.
Korean J Physiol Pharmacol ; 13(4): 287-93, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19885012

ABSTRACT

The dried roots of Danshen (Salvia miltiorrhiza) and Sanchi (Panax notoginseng) have been widely used in traditional Chinese medicine for promoting blood circulation as well as various other bodily functions. Here we investigated the effects of a mixture of aqueous extracts of Danshen and Sanchi, named PASEL, on blood pressure and vascular contractility in rats. Orally administered PASEL (62.5 mg/kg and 250 mg/kg, for 5 weeks) lowered the blood pressure of spontaneous hypertensive rats (SHR) but this was not observed in normal Wistar-Kyoto rats (WKR). We then investigated the effects of PASEL on the arterial contraction of the small branches of cerebral arteries (CAs) and large conduit femoral arteries (FAs) in rats. PASEL did not affect high-K (KCl 60 mM)- or phenyleprine (PhE)-induced contracture of FAs. The myogenic response, a reactive arterial constriction in response to increased luminal pressure, of small CA was dose-dependently suppressed by PASEL in SHR as well as control rats. Interestingly, the KCl-induced contraction of small CAs was slowly reversed by PASEL, and this effect was more prominent in SHR than control WKR. PASEL did not inhibit angiotensin-converting enzyme (ACE) activity. These results demonstrated that the antihypertensive effect of PASEL might be primarily mediated by altering the arterial MR, not by direct inhibition of L-type Ca(2+) channels or by ACE inhibition.

16.
Pflugers Arch ; 457(2): 281-91, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18542991

ABSTRACT

The effects of luminal ATP between rabbit pulmonary (PAs) and coronary arteries (CAs) were compared to understand the role of purinoceptors in the regulation of pulmonary arterial pressure (PAP) under hypoxia. Diameters of vessels were video analyzed under luminal perfusion. ATP-induced membrane currents and intracellular Ca(2+) signals ([Ca(2+)](i)) were compared in pulmonary (PASMCs) and coronary myocytes (CASMCs) using patch clamp and spectrofluorimetry. PAP was measured in perfused lungs under ventilation. Luminal ATP induced constriction of rabbit PAs in the presence of endothelium. In contrast, CAs showed dilating responses to luminal ATP even in the absence of endothelium. In PASMCs, both P2X-mediated inward current and P2Y-mediated store Ca(2+) release were consistently observed. In contrast, CASMCs showed neither P2X nor P2Y responses. In the perfused lungs, hypoxia-induced PAP increase was decreased by suramin, a purinergic antagonist. A luminal application of alpha,beta-meATP largely increased PAP, whereas UTP decreased PAP. The combined application of P2X- and P2Y-selective agonists (alpha,beta-meATP and UTP) increased PAP. However, the perfusion of ATP alone decreased PAP, and the ATP-induced PAP decrease was affected neither by adenosine receptor antagonist nor by nitric oxide synthase inhibitor. In summary, although the luminal ATP constricts isolated PAs and suramin attenuated the HPV of perfused lungs, the bimodal responses of PAP to purinergic agonists indicate that the luminal ATP regulates pulmonary circulation via complex signaling interactions in situ.


Subject(s)
Adenosine Triphosphate/metabolism , Blood Pressure , Coronary Circulation , Coronary Vessels/metabolism , Pulmonary Artery/metabolism , Pulmonary Circulation , Receptors, Purinergic P2/metabolism , Vasoconstriction , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Animals , Calcium Signaling , Coronary Circulation/drug effects , Coronary Vessels/drug effects , Endothelium, Vascular/metabolism , Female , Hypoxia/metabolism , Hypoxia/physiopathology , In Vitro Techniques , Male , Membrane Potentials , Muscle, Smooth, Vascular/metabolism , Patch-Clamp Techniques , Perfusion , Pulmonary Artery/drug effects , Pulmonary Artery/physiopathology , Pulmonary Circulation/drug effects , Rabbits , Receptors, Purinergic P2/drug effects , Respiration, Artificial , Spectrometry, Fluorescence , Suramin/pharmacology , Uridine Triphosphate/metabolism , Vasoconstriction/drug effects , Vasodilation , Video Recording
17.
Prog Biophys Mol Biol ; 96(1-3): 399-420, 2008.
Article in English | MEDLINE | ID: mdl-17915297

ABSTRACT

In vascular smooth muscle cells, it has been suggested that membrane potential is an important component that initiates contraction. We developed a mathematical model to elucidate the quantitative contributions of major ion currents [a voltage-gated L-type Ca2+ current (ICaL), a voltage-sensitive K+ current (IKV), a Ca2+-activated K+ current (IKCa) and a nonselective cation current (INSC)] to membrane potential. In order to typify the diverse nature of pulmonary artery smooth muscle cells (PASMCs), we introduced parameters that are not fixed (variable parameters). The population of cells with different parameters was constructed and the cells that have the electrophysiological properties of PASMCs were selected. The contributions of each membrane current were investigated by sensitivity analysis and modification of the current parameters. Consequently, IKV and INSC were found to be the most important currents that affect the membrane potential. The occurrence of depolarisation in hypoxic pulmonary vasoconstriction (HPV) was also examined. In hypoxia, IKV and IKCa were reduced, but the consequent depolarisation in simulation was not enough to initiate contractions. If we add an increase of INSC (2.5-fold), the calculated membrane potential was enough to induce contraction. From the results, we conclude that the balance of various ion channel activities determines the resting membrane potential of PASMCs and our model was successful in explaining the depolarisation in HPV. Therefore, this model can be a powerful tool to investigate the various electrical properties of PASMCs in both normal and pathological conditions.


Subject(s)
Cardiac Electrophysiology , Hypoxia/metabolism , Models, Cardiovascular , Myocytes, Smooth Muscle/physiology , Pulmonary Artery/physiology , Vasoconstriction/physiology , Animals , Humans , Pulmonary Artery/cytology , Rabbits
18.
Cardiovasc Res ; 76(2): 224-35, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17658500

ABSTRACT

OBJECTIVE: The mechanosensitive nonselective cation channel (NSC(MS)) and endothelin-1 (ET-1) play critical roles in the regulation of vascular tone. This study was undertaken to investigate the effect of ET-1 on NSC(MS) and on the myogenic response of arteries. METHODS: Cell-attached patch-clamp techniques were applied to rabbit pulmonary and cerebral arterial smooth muscle cells using a 140 mM CsCl pipette and bath solutions (Ca(2+)-free, 1 mM EGTA). Myogenic responses were determined by video analysis of pressurized arteries. RESULTS: The application of negative pressures through the pipette activated NSC(MS), and this was augmented by bath application of ET-1 (1 pM-30 nM). ET-1 lowered the lowest pressure required for NSC(MS) activation. NSC(MS) facilitation by ET-1 was prevented by BQ-123 (1 microM, an ET(A) antagonist) but not by BQ-788 (1 microM, an ET(B) antagonist). Phorbol 12-myristate 13-acetate (PMA, 100 nM), a protein kinase C activator, also increased the activity of NSC(MS). ET-1- or PMA-induced facilitation of NSC(MS) was abolished by GF109203X (10 microM), a protein kinase C inhibitor. Video analysis of pressurized cerebral artery showed inhibition of the myogenic response by the NSC(MS) channel blockers GsMTx-4 (5 microM) and DIDS (3-100 microM). Treatment with ET-1 (10 pM) augmented the myogenic response and this was inhibited by DIDS (30 microM). CONCLUSION: Stimulation of ET-1 receptor (ET(A)) facilitates NSC(MS) via a protein kinase C-dependent signaling pathway in rabbit arterial myocytes. Our findings suggest that NSC(MS) play a role in the myogenic response and its augmentation by ET-1.


Subject(s)
Endothelin-1/pharmacology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Protein Kinase C/physiology , Transient Receptor Potential Channels/drug effects , Animals , Calcium/metabolism , Female , Humans , Intercellular Signaling Peptides and Proteins , Male , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/physiology , Peptides/pharmacology , Pulmonary Artery/cytology , Pulmonary Artery/drug effects , Pulmonary Artery/physiology , Rabbits , Spider Venoms/pharmacology , Stress, Mechanical , TRPC Cation Channels/drug effects , TRPC Cation Channels/physiology , TRPC6 Cation Channel , TRPM Cation Channels/drug effects , TRPM Cation Channels/physiology , Transient Receptor Potential Channels/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...