Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Musculoskelet Disord ; 22(1): 741, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34454446

ABSTRACT

BACKGROUND: Vertebroplasty (VP) is considered an alternative therapy in an osteoporotic compression fracture that failed conservative treatment. However, cement leakage into the intradural space can cause catastrophic complications. To the best of our knowledge, intradural cement leakage following VP has been reported only in 7 cases. We report here a case of intradural cement leakage following VP with a literature review. CASE PRESENTATION: An 84-year-old female with an L1 osteoporotic fracture underwent percutaneous VP at a local hospital. Immediately after the procedure, she complained of weakness, numbness, and pain in both legs, and her back pain aggravated. She was transferred to our hospital. The initial muscle power was grade 2 for the right leg and grade 4 for the left leg. Computed tomography (CT) scan showed intradural cement leakage from T10 to L2. Magnetic resonance imaging showed an intradural mass lesion. Although we performed total laminectomy with durotomy and removed intradural cement completely, the neurological deficit did not completely recover. The muscle power was grade 3 for the right leg and grade 4 for the left leg at the last follow-up. CONLCUSIONS: If a neurological deficit is found after VP, a CT scan should be taken to confirm the pattern of cement leakage. In case of intradural cement leakage, surgical decompression should be recommended to improve neurological deficit. To prevent intradural cement leakage during the VP, the needle tip should not perforate the medial wall of the pedicle with appropriate viscosity of cement.


Subject(s)
Lumbar Vertebrae , Vertebroplasty , Aged, 80 and over , Bone Cements/adverse effects , Female , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Paraplegia , Postoperative Complications/diagnostic imaging , Postoperative Complications/etiology , Vertebroplasty/adverse effects
2.
Geriatr Orthop Surg Rehabil ; 12: 21514593211027055, 2021.
Article in English | MEDLINE | ID: mdl-34262792

ABSTRACT

PURPOSE: Various surgical methods have been reported for Kummell's disease with neurologic deficits. The aim of this study was to introduce long-segmental posterior fusion (LPF) combined with vertebroplasty (VP) and wiring as an alternative surgical technique. MATERIAL AND METHODS: We retrospectively analyzed 10 patients undergoing posterior decompression and LPF combined with VP and wiring for Kummell's disease with neurologic deficits from January 2011 to December 2014. The radiologic outcomes included the local kyphotic angle (LKA) and segmental kyphotic angle (SKA). Clinical outcomes, including the visual analog scale (VAS), the Oswestry Disability Index (ODI) and the Frankel grade were assessed. Surgery-related complications were also evaluated. RESULTS: The mean age of the included patients was 77 ± 8 years with a mean follow-up period of 31.4 ± 4.9 months and a mean bone mineral density of -3.5 ± 0.7 (T-score). The mean operation time was 220 ± 32.3 minutes with a mean blood loss of 555 ± 125.7 mL. The preoperative LKA and SKA were significantly corrected postoperatively (37.9 ± 8.7° vs. 15.3 ± 5.3°, p = 0.005 for LKA; 21.3 ± 5.1° vs. 7.6 ± 2.8°, p = 0.005 for SKA) without a loss of correction at the last follow-up. The VAS and ODI were also significantly improved (7.7 ± 1.1 vs. 3.0 ± 1.6, p = 0.007 for VAS; 90.3 ± 8.9 vs. 49.6 ± 22.7, p = 0.007 for ODI). The Frankel grade of all patients was improved by at least 1 or 2 grades at the last follow-up. Surgery-related complications such as intraoperative cement leakage and implant loosening during the follow-up were not observed. CONCLUSIONS: LPF combined with VP and wiring might be an effective surgical option for Kummell's disease with neurologic deficits, especially for the elderly patients with morbidities. LEVEL OF EVIDENCE: level IV.

3.
BMC Musculoskelet Disord ; 22(1): 412, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33947363

ABSTRACT

BACKGROUND: Lumbar spinal stenosis (LSS) can cause various neurological symptoms and reduce the daily activity of patients. Many studies have shown that free physical activities and exercise can improve bone mineral density (BMD) in patients with osteoporosis. However, the effect of LSS on BMD has not been reported. The purpose of this study was to investigate the effects of LSS on BMD in patients treated with ibandronate for newly diagnosed osteoporosis. METHODS: Group 1 included 83 patients treated for osteoporosis alone, and group 2 included 76 patients treated for both osteoporosis and symptomatic LSS. We confirmed four BMD values presented as T-score at initial, and 1-, 2-, and 3-year follow-ups. Mean BMD and annual changes of BMD for three years were compared between the two groups. Correlations between initial BMD and total change of BMD, and related factors for continuous BMD improvement for three years were also evaluated. RESULTS: Mean annual BMDs were significantly higher in group 1 compared than in group 2 (-3.39 vs. -3.58 at 1-year; -3.27 vs. -3.49 at 2-year; -3.13 vs. -3.45 at 3-year; all p < 0.05). Annual change of BMD at 1-year follow-up (0.32 vs. 0.21, p = 0.036) and total change of BMD for three years (0.57 vs. 0.35, p = 0.002) were significantly higher in group 1. Group 1 had a strong negative correlation (r = -0.511, P = 0.000) between initial BMD and total change of BMD, whereas group 2 showed a weak negative correlation (r = -0.247, p = 0.032). In multivariate analysis, symptomatic LSS was the only independent risk factor for continuous BMD improvement (Odds ratio = 0.316, p = 0.001). CONCLUSIONS: Symptomatic LSS may interfere with BMD improvement in the treatment of osteoporosis with ibandronate. Active treatment for LSS with more potent treatment for osteoporosis should be taken to increase BMD for patients with osteoporosis and LSS.


Subject(s)
Bone Density Conservation Agents , Osteoporosis , Spinal Stenosis , Bone Density , Bone Density Conservation Agents/therapeutic use , Diphosphonates/therapeutic use , Humans , Ibandronic Acid , Lumbar Vertebrae/diagnostic imaging , Osteoporosis/diagnostic imaging , Osteoporosis/drug therapy , Osteoporosis/epidemiology , Spinal Stenosis/diagnostic imaging , Spinal Stenosis/drug therapy , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...