Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 8: 15882, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28691697

ABSTRACT

We report a facile roll-printing method, geometrically confined lateral crystal growth, for the fabrication of large-scale, single-crystal CH3NH3PbI3 perovskite thin films. Geometrically confined lateral crystal growth is based on transfer of a perovskite ink solution via a patterned rolling mould to a heated substrate, where the solution crystallizes instantly with the immediate evaporation of the solvent. The striking feature of this method is that the instant crystallization of the feeding solution under geometrical confinement leads to the unidirectional lateral growth of single-crystal perovskites. Here, we fabricated single-crystal perovskites in the form of a patterned thin film (3 × 3 inch) with a high carrier mobility of 45.64 cm2 V-1 s-1. We also used these single-crystal perovskite thin films to construct solar cells with a lateral configuration. Their active-area power conversion efficiency shows a highest value of 4.83%, which exceeds the literature efficiency values of lateral perovskite solar cells.

2.
Mar Drugs ; 15(6)2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28617322

ABSTRACT

The protective effects of a chondroitin sulfate-rich extract (CSE) from skate cartilage against lipopolysaccharide (LPS)-induced hepatic damage were investigated, and its mechanism of action was compared with that of chondroitin sulfate (CS) from shark cartilage. ICR mice were orally administrated 200 mg/kg body weight (BW) of CS or 400 mg/kg BW of CSE for 3 consecutive days, followed by a one-time intraperitoneal injection of LPS (20 mg/kg BW). The experimental groups were vehicle treatment without LPS injection (NC group), vehicle treatment with LPS injection (LPS group), CS pretreatment with LPS injection (CS group), and CSE pretreatment with LPS injection (CSE group). Hepatic antioxidant enzyme expression levels in the CS and CSE groups were increased relative to those in the LPS group. In LPS-insulted hepatic tissue, inflammatory factors were augmented relative to those in the NC group, but were significantly suppressed by pretreatment with CS or CSE. Moreover, CS and CSE alleviated the LPS-induced apoptotic factors and mitogen-activated protein kinase (MAPK). In addition, CS and CSE effectively decreased the serum lipid concentrations and downregulated hepatic sterol regulatory element-binding proteins expression. In conclusion, the skate CSE could protect against LPS-induced hepatic dyslipidemia, oxidative stress, inflammation, and apoptosis, probably through the regulation of MAPK signaling.


Subject(s)
Cartilage/chemistry , Chondroitin Sulfates/pharmacology , Lipopolysaccharides/toxicity , Liver/drug effects , Skates, Fish , Animals , Body Weight/drug effects , Lipids/blood , Male , Mice , Mice, Inbred ICR , Tumor Necrosis Factor-alpha/analysis , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Adv Mater ; 29(6)2017 Feb.
Article in English | MEDLINE | ID: mdl-27885700

ABSTRACT

Manufacturing high-performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high-performance organic electronic and optoelectronic devices relies on high-quality single crystals that show optimal intrinsic charge-transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high-performance organic integrated electronics are also addressed.

4.
Angew Chem Int Ed Engl ; 55(35): 10273-7, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27461905

ABSTRACT

We directly observed charge separation and a space-charge region in an organic single-crystal p-n heterojunction nanowire, by means of scanning photocurrent microscopy. The axial p-n heterojunction nanowire had a well-defined planar junction, consisted of P3HT (p-type) and C60 (n-type) single crystals and was fabricated by means of the recently developed inkjet-assisted nanotransfer printing technique. The depletion region formed at the p-n junction was directly observed by exploring the spatial distribution of photogenerated carriers along the heterojunction nanowire under various applied bias voltages. Our study provides a facile approach toward the precise characterization of charge transport in organic heterojunction systems as well as the design of efficient nanoscale organic optoelectronic devices.

5.
Sci Rep ; 6: 23108, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26976527

ABSTRACT

Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8-133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.

6.
Adv Mater ; 28(15): 2874-80, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-26891239

ABSTRACT

Inkjet-assisted nanotransfer printing (inkjet-NTP) facilitates spatial control of many arrays of various organic functional materials on a single substrate with a high-throughput integration process, enabling monolithic integration of various organic nanopatterns. Inkjet-NTP enables wafer-scale organic electronic circuits composed of field-effect transistors, complementary inverters, and p-n diodes, demonstrating its capability to produce a high-performance, multifunctional organic chip.

7.
Nano Lett ; 15(1): 289-93, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25470380

ABSTRACT

We fabricated cross-stacked organic p-n nanojunction arrays made of single-crystal 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN) and fullerene (C60) nanowires as p-type and n-type semiconductors, respectively, by using a nanotransfer printing technique. Single-crystal C60 nanowires were synthesized inside nanoscale channels of a mold and directly transferred onto a desired position of a flexible substrate by a lubricant liquid layer. In the consecutive printing process, single-crystal TIPS-PEN nanowires were grown in the same way and then perpendicularly aligned and placed onto the C60 nanowire arrays, resulting in a cross-stacked single-crystal organic p-n nanojunction array. The cross-stacked single-crystal TIPS-PEN/C60 nanowire p-n nanojunction devices show rectifying behavior with on/off ratio of ∼ 13 as well as photodiode characteristic with photogain of ∼ 2 under a light intensity of 12.2 mW/cm(2). Our study provides a facile, solution-processed approach to fabricate a large-area array of organic crystal nanojunction devices in a desired arrangement for future nanoscale electronics.

8.
Nano Lett ; 14(6): 3321-7, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24848306

ABSTRACT

We developed single-crystal poly(3,4-ethylenedioxythiopene) (PEDOT) nanowires with ultrahigh conductivity using liquid-bridge-mediated nanotransfer printing with vapor phase polymerization. The single-crystal PEDOT nanowires are formed from 3,4-ethylenedioxythiophene (EDOT) monomers that are self-assembled and crystallized during vapor phase polymerization process within nanoscale channels of a mold having FeCl3 catalysts. These PEDOT nanowires, aligned according to the pattern in the mold, are then directly transferred to specific positions on a substrate to generate a nanowire array by a direct printing process. The PEDOT nanowires have closely packed single-crystalline structures with orthorhombic lattice units. The conductivity of the single-crystal PEDOT nanowires is an average of 7619 S/cm with the highest up to 8797 S/cm which remarkably exceeds literature values of PEDOT nanostructures/thin films. Such distinct conductivity enhancement of single-crystal PEDOT nanowires can be attributed to improved carrier mobility in PEDOT nanowires. To demonstrate usefulness of single-crystal PEDOT nanowires, we fabricated an organic nanowire field-effect transistor array contacting the ultrahigh conductive PEDOT nanowires as metal electrodes.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Nanoparticles/chemistry , Nanowires/chemistry , Polymers/chemistry , Nanoparticles/ultrastructure , Nanowires/ultrastructure
9.
J Nanosci Nanotechnol ; 14(8): 6266-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25936101

ABSTRACT

Poly(9,9-dioctylfluorene) nanowire arrays with pronounced ß-phase were prepared by a one-step fabrication method, liquid-bridge-mediated nanotransfer molding. Liquid-bridge-mediated nanotransfer molding is a new direct nano-patterning method based on the direct transfer of various materials from a mold to a substrate via liquid layer. We fabricated poly(9,9-dioctylfluorene) nanowire arrays (80 nm parallel lines and 120 nm spaces) by Liquid-bridge-mediated nanotransfer molding using the poly(9,9-dioctylfluorene) ink solution. The formation of the ß-phase poly(9,9-dioctylfluorene) was proved by the present of an absorption peak at 435 nm. The most intense photoluminescence emission was obtained with the collection polarizer oriented parallel to the nanowire long axis, and an emission dichroic ratio of 3.7 was determined.

10.
Biotechnol Bioeng ; 110(10): 2790-4, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23568786

ABSTRACT

Butyrate pathway was constructed in recombinant Escherichia coli using the genes from Clostridium acetobutylicum and Treponema denticola. However, the pathway constructed from exogenous enzymes did not efficiently convert carbon flux to butyrate. Three steps of the productivity enhancement were attempted in this study. First, pathway engineering to delete metabolic pathways to by-products successfully improved the butyrate production. Second, synthetic scaffold protein that spatially co-localizes enzymes was introduced to improve the efficiency of the heterologous pathway enzymes, resulting in threefold improvement in butyrate production. Finally, further optimizations of inducer concentrations and pH adjustment were tried. The final titer of butyrate was 4.3 and 7.2 g/L under batch and fed-batch cultivation, respectively. This study demonstrated the importance of synthetic scaffold protein as a useful tool for optimization of heterologous butyrate pathway in E. coli.


Subject(s)
Butyrates , Escherichia coli , Metabolic Engineering/methods , Metabolic Networks and Pathways , Synthetic Biology/methods , Acetates/analysis , Acetates/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Butyrates/analysis , Butyrates/metabolism , Clostridium acetobutylicum/enzymology , Clostridium acetobutylicum/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Bacterial , Glucose/analysis , Glucose/metabolism , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/physiology , Treponema denticola/enzymology , Treponema denticola/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...