Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Dermatol Sci ; 106(3): 159-169, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35610161

ABSTRACT

BACKGROUND: Nicotinamide mononucleotide (NMN) is a representative anti-aging drug that, after long-term administration in mice, causes an increase in energy and lipid metabolism, improves eye function, immune response, and increases insulin sensitivity. However, the effects of NMN on skin pigmentation are still unknown. OBJECTIVE: In this study, we aimed to demonstrate the effects of NMN on melanogenesis. METHODS: NMN was applied to both young and aged melanocytes, and melanin production, protein expression, and mRNA levels were analyzed. A reconstituted human skin model was used to validate the effect of NMN on melanogenesis in vivo. RESULTS: NMN treatment showed no apparent effects on young melanocytes, however, in aged melanocytes, a marked reduction in melanin production was observed. NMN treatment also efficiently reduced melanin production in a reconstituted human skin with aged melanocytes. Genome-wide analysis showed the downregulation of melanogenesis-related cyclic adenosine monophosphate (cAMP)/Wnt signaling in aged melanocytes. Moreover, NMN treatment downregulated forskolin-induced expression of melanogenesis-related proteins, tyrosinase (TYR), tyrosinase-related protein (TRP)- 1, and TRP-2. Nicotinamide adenine dinucleotide (NAD+), an NMN product within the cells, also reduced cAMP/Wnt signaling in aged melanocytes. SLC12A6 was the most highly expressed gene among the SLC12A family members in melanocytes and was significantly influenced by NMN or NAD+ treatment, indicating that SLC12A6 protein is an NMN transporter in melanocytes. CONCLUSION: NMN reduces melanogenesis in aged melanocytes by downregulating the signaling of melanogenesis-associated receptors. Therefore, NMN is a human-friendly anti-melanogenic agent with the potential to aid in aging-related hyperpigmentation therapy.


Subject(s)
Melanins , Nicotinamide Mononucleotide , Animals , Cyclic AMP/metabolism , Melanocytes/metabolism , Mice , Monophenol Monooxygenase/metabolism , NAD/metabolism , NAD/pharmacology , Nicotinamide Mononucleotide/metabolism , Nicotinamide Mononucleotide/pharmacology , Wnt Signaling Pathway
2.
J Ginseng Res ; 45(1): 126-133, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33437164

ABSTRACT

BACKGROUND: 20(S)-protopanaxadiol (20(S)-PPD), one of the aglycone derivatives of major ginsenosides, has been shown to have an anticancer activity toward a variety of cancers. This study was initiated with an attempt to evaluate its anti-cancer activity toward human endometrial cancer by cell and xenograft mouse models. METHODS: Human endometrial cancer (HEC)-1A cells were incubated with different 20(S)-PPD concentrations. 20(S)-PPD cytotoxicity was evaluated using MTT assay. Apoptosis was detected using the annexin V binding assay and cell cycle analysis. Cleaved poly (ADP-ribose) polymerase (PARP) and activated caspase-9 were assessed using western blotting. HEC-1A cell tumor xenografts in athymic mice were generated by inoculating HEC-1A cells into the flank of BALB/c female mice and explored to validate 20(S)-PPD anti-endometrial cancer toxicity. RESULTS: 20(S)-PPD inhibited HEC-1A cell proliferation in a dose-dependent manner with an IC50 value of 3.5 µM at 24 h. HEC-1A cells morphologically changed after 20(S)-PPD treatment, bearing resemblance to Taxol-treated cells. Annexin V-positive cell percentages were 0%, 10.8%, and 58.1% in HEC-1A cells when treated with 0, 2.5, and 5 µM of 20(S)-PPD, respectively, for 24 h. 20(S)-PPD subcutaneously injected into the HEC-1A cell xenograft-bearing mice three times a week for 17 days manifested tumor growth inhibition by as much as 18% at a dose of 80 mg/kg, which sharply contrasted to controls that showed an approximately 2.4-fold tumor volume increase. These events paralleled caspase-9 activation and PARP cleavage. CONCLUSION: 20(S)-PPD inhibits endometrial cancer cell proliferation by inducing cell death via a caspase-mediated apoptosis pathway. Therefore, the 20(S)-PPD-like ginsenosides are endowed with ample structural information that could be utilized to develop other ginsenoside-based anticancer agents.

4.
Sci Rep ; 9(1): 15042, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31636298

ABSTRACT

Fibrosarcoma is a skin tumor that is frequently observed in humans, dogs, and cats. Despite unsightly appearance, studies on fibrosarcoma have not significantly progressed, due to a relatively mild tumor severity and a lower incidence than that of other epithelial tumors. Here, we focused on the role of a recently-found dermis zinc transporter, ZIP13, in fibrosarcoma progression. We generated two transformed cell lines from wild-type and ZIP13-KO mice-derived dermal fibroblasts by stably expressing the Simian Virus (SV) 40-T antigen. The ZIP13-/- cell line exhibited an impairment in autophagy, followed by hypersensitivity to nutrient deficiency. The autophagy impairment in the ZIP13-/- cell line was due to the low expression of LC3 gene and protein, and was restored by the DNA demethylating agent, 5-aza-2'-deoxycytidine (5-aza) treatment. Moreover, the DNA methyltransferase activity was significantly increased in the ZIP13-/- cell line, indicating the disturbance of epigenetic regulations. Autophagy inhibitors effectively inhibited the growth of fibrosarcoma with relatively minor damages to normal cells in xenograft assay. Our data show that proper control over autophagy and zinc homeostasis could allow for the development of a new therapeutic strategy to treat fibrosarcoma.


Subject(s)
Autophagy , Cation Transport Proteins/deficiency , Dermis/metabolism , Fibrosarcoma/pathology , Animals , Autophagy/drug effects , Azacitidine/pharmacology , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Cell Death/drug effects , Cell Line , DNA (Cytosine-5-)-Methyltransferases/metabolism , Disease Models, Animal , Down-Regulation/drug effects , Down-Regulation/genetics , Ethylenediamines/pharmacology , Fibrosarcoma/genetics , Humans , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...