Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Pathogens ; 13(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38535556

ABSTRACT

The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis (VL), a potentially fatal disease if left untreated. Given the limitations of current therapies, there is an urgent need for new, safe, and effective drugs. To discover novel antileishmanial compounds from previously unexplored chemical spaces, we conducted a high-throughput screening (HTS) of 2562 natural compounds, assessing their activity against L. donovani promastigotes and intracellular amastigotes. Utilizing the criteria of ≥70% parasite growth inhibition and ≥70% host cell (THP-1) viability, we selected 100 inhibitors for half-maximal inhibitory concentration (IC50) value determination. Twenty-six compounds showed activities in both forms of Leishmania with a selectivity index of over 3. Clustering analysis resulted in four chemical clusters with scaffolds of lycorine (cluster 1), 5-hydroxy-9,10-dihydro-4H,8H-pyrano[2,3-f]chromene-4,8-dione (cluster 2), and semi-synthetic derivatives of ansamycin macrolide (cluster 4). The enantiomer of lycorine, BMD-NP-00820, showed the highest anti-amastigote activity with an IC50 value of 1.74 ± 0.27 µM and a selectivity index (SI) > 29. In cluster 3, the most potent compound had an IC50 value of 2.20 ± 0.29 µM with an SI > 23, whereas in cluster 4, with compounds structurally similar to the tuberculosis drug rifapentine, BMD-NP-02085 had an IC50 value of 1.76 ± 0.28 µM, but the SI value was 7.5. Taken together, the natural products identified from this study are a potential source for the discovery of antileishmanial chemotypes for further development.

2.
Bioorg Chem ; 141: 106890, 2023 12.
Article in English | MEDLINE | ID: mdl-37783099

ABSTRACT

Conformational restriction was addressed towards the development of more selective and effective antileishmanial agents than currently used drugs for treatment of Leishmania donovani; the causative parasite of the fatal visceral leishmaniasis. Five types of cyclopentane-based conformationally restricted miltefosine analogs that were previously explored in literature as anticancer AKT-inhibitors were reprepared and repurposed as antileishmanial agents. Amongst, positions-1 and 2 cis-conformationally-restricted compound 1a and positions-2 and 3 trans-conformationally-restricted compound 3b were highly potent eliciting sub-micromolar IC50 values for inhibition of infection and inhibition of parasite number compared with the currently used miltefosine drug that showed low micromolar IC50 values for inhibition of infection and inhibition of parasite number. Compounds 1a and 3b eradicated the parasite without triggering host cells cytotoxicity over more than one log concentration interval which is a superior performance compared to miltefosine. In silico studies suggested that conformational restriction conserved the conformer capable of binding LdAKT-like kinase while it might be possible that it excludes other conformers mediating undesirable effects and/or toxicity of miltefosine. Together, this study presents compounds 1a and 3b as antileishmanial agents with superior performance over the currently used miltefosine drug.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Proto-Oncogene Proteins c-akt , Cyclopentanes/pharmacology , Drug Repositioning , Antiprotozoal Agents/chemistry
3.
ACS Infect Dis ; 9(2): 342-364, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36706233

ABSTRACT

SQ109 is a tuberculosis drug candidate that has high potency against Mycobacterium tuberculosis and is thought to function at least in part by blocking cell wall biosynthesis by inhibiting the MmpL3 transporter. It also has activity against bacteria and protozoan parasites that lack MmpL3, where it can act as an uncoupler, targeting lipid membranes and Ca2+ homeostasis. Here, we synthesized 18 analogs of SQ109 and tested them against M. smegmatis, M. tuberculosis, M. abscessus, Bacillus subtilis, and Escherichia coli, as well as against the protozoan parasites Trypanosoma brucei, T. cruzi, Leishmania donovani, L. mexicana, and Plasmodium falciparum. Activity against the mycobacteria was generally less than with SQ109 and was reduced by increasing the size of the alkyl adduct, but two analogs were ∼4-8-fold more active than SQ109 against M. abscessus, including a highly drug-resistant strain harboring an A309P mutation in MmpL3. There was also better activity than found with SQ109 with other bacteria and protozoa. Of particular interest, we found that the adamantyl C-2 ethyl, butyl, phenyl, and benzyl analogs had 4-10× increased activity against P. falciparum asexual blood stages, together with low toxicity to a human HepG2 cell line, making them of interest as new antimalarial drug leads. We also used surface plasmon resonance to investigate the binding of inhibitors to MmpL3 and differential scanning calorimetry to investigate binding to lipid membranes. There was no correlation between MmpL3 binding and M. tuberculosis or M. smegmatis cell activity, suggesting that MmpL3 is not a major target in mycobacteria. However, some of the more active species decreased lipid phase transition temperatures, indicating increased accumulation in membranes, which is expected to lead to enhanced uncoupler activity.


Subject(s)
Malaria , Mycobacterium abscessus , Mycobacterium tuberculosis , Parasites , Tuberculosis , Animals , Humans , Antitubercular Agents/pharmacology , Parasites/metabolism , Bacterial Proteins/metabolism , Tuberculosis/microbiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Lipids
4.
Biomedicines ; 10(3)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35327472

ABSTRACT

SQ109 is an anti-tubercular drug candidate that has completed Phase IIb/III clinical trials for tuberculosis and has also been shown to exhibit potent in vitro efficacy against protozoan parasites including Leishmania and Trypanosoma cruzi spp. However, its in vivo efficacy against protozoa has not been reported. Here, we evaluated the activity of SQ109 in mouse models of Leishmania, Trypanosoma spp. as well as Toxoplasma infection. In the T. cruzi mouse model, 80% of SQ109-treated mice survived at 40 days post-infection. Even though SQ109 did not cure all mice, these results are of interest since they provide a basis for future testing of combination therapies with the azole posaconazole, which acts synergistically with SQ109 in vitro. We also found that SQ109 inhibited the growth of Toxoplasma gondii in vitro with an IC50 of 1.82 µM and there was an 80% survival in mice treated with SQ109, whereas all untreated animals died 10 days post-infection. Results with Trypanosoma brucei and Leishmania donovani infected mice were not promising with only moderate efficacy. Since SQ109 is known to be extensively metabolized in animals, we investigated the activity in vitro of SQ109 metabolites. Among 16 metabolites, six mono-oxygenated forms were found active across the tested protozoan parasites, and there was a ~6× average decrease in activity of the metabolites as compared to SQ109 which is smaller than the ~25× found with mycobacteria.

5.
Biochem Biophys Res Commun ; 569: 193-198, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34256188

ABSTRACT

Visceral leishmaniasis (VL) is a fatal infectious disease caused by viscerotropic parasitic species of Leishmania. Current treatment options are often ineffective and toxic, and more importantly, there are no clinically validated drug targets available to develop next generation therapeutics against VL. Topoisomerase IB (TopIB) is an essential enzyme for Leishmania survival. The enzyme is organized as a bi-subunit that is distinct from the monomeric topoisomerase I of human. Based on this unique feature, we synthesized peptides composed of partial amino acid sequences of small subunit of Leishmania donovani (Ld) TopIB to confirm a decrease in catalytic activity by interfering the interaction between the two subunits. One of the synthetic peptides, covering essential amino acids for catalytic activity of LdTopIB, interrupted the enzymatic activity. Next, we examined 151 compounds selected from virtual screening in a functional assay and identified three LRL-TP compounds with a significant decrease in LdTopIB activity (IC50 of LRL-TP-85: 1.3 µM; LRL-TP-94: 2.9 µM; and LRL-TP-101: 35.3 µM) and no effects on Homo sapiens (Hs) TopIB activity. Based on molecular docking, the protonated tertiary amine of inhibitors formed key interactions with S415 of the large subunit. The EC50 values of LRL-TP-85, LRL-TP-94, and LRL-TP-101 were respectively 4.9, 1.4, and 27.8 µM in extracellular promastigote assay and 34.0, 53.7, and 11.4 µM in intracellular amastigote assay. Overall, we validated the protein-protein interaction site of LdTopIB as a potential drug target and identified small molecule inhibitors with anti-leishmanial activity.


Subject(s)
DNA Topoisomerases, Type I/metabolism , Leishmania donovani/enzymology , Protein Interaction Maps/drug effects , Protozoan Proteins/metabolism , Topoisomerase I Inhibitors/pharmacology , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Cells, Cultured , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Topoisomerases, Type I/chemistry , DNA Topoisomerases, Type I/genetics , Humans , Leishmania donovani/drug effects , Leishmania donovani/genetics , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/prevention & control , Mice , Models, Molecular , Molecular Structure , Nucleic Acid Conformation , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Protein Binding/drug effects , Protein Domains , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , THP-1 Cells , Topoisomerase I Inhibitors/chemistry
6.
Pathogens ; 9(5)2020 May 20.
Article in English | MEDLINE | ID: mdl-32443883

ABSTRACT

Protozoan parasites of the genus Leishmania are the causative agents of leishmaniasis, a spectrum of a disease that threatens public health worldwide. Although next-generation therapeutics are urgently needed, the early stage of the drug discovery process is hampered by very low hit rates from intracellular Leishmania phenotypic high-throughput screenings. Designing and applying a physiologically relevant in vitro assay is therefore in high demand. In this study, we characterized the infectivity, morphology, and drug susceptibility of different Leishmania and host cell infection combinations. Primary bone marrow-derived macrophage (BMDM) and differentiated human acute monocytic leukemia (THP-1) cells were infected with amastigote or promastigote forms of Leishmania amazonensis and Leishmania donovani. Regardless of host cell types, amastigotes were generally well phagocytosed and showed high infectivity, whereas promastigotes, especially those of L. donovani, had predominantly remained in the extracellular space. In the drug susceptibility test, miltefosine and sodium stibogluconate (SSG) showed varying ranges of activity with 14 and >10-fold differences in susceptibility, depending on the host-parasite pairs, indicating the importance of assay conditions for evaluating antileishmanial activity. Overall, our results suggest that combinations of Leishmania species, infection forms, and host cells must be carefully optimized to evaluate the activity of potential therapeutic compounds against Leishmania.

7.
Molecules ; 25(8)2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32340370

ABSTRACT

Kinetoplastid parasites, including Leishmania and Trypanosoma spp., are life threatening pathogens with a worldwide distribution. Next-generation therapeutics for treatment are needed as current treatments have limitations, such as toxicity and drug resistance. In this study, we examined the activities of established mammalian target of rapamycin (mTOR)/phosphoinositide 3-kinase (PI3K) inhibitors against these tropical diseases. High-throughput screening of a library of 1742 bioactive compounds against intracellular L. donovani was performed, and seven mTOR/PI3K inhibitors were identified. Dose-dilution assays revealed that these inhibitors had half maximal effective concentration (EC50) values ranging from 0.14 to 13.44 µM for L. donovani amastigotes and from 0.00005 to 8.16 µM for T. brucei. The results of a visceral leishmaniasis mouse model indicated that treatment with Torin2, dactolisib, or NVP-BGT226 resulted in reductions of 35%, 53%, and 54%, respectively, in the numbers of liver parasites. In an acute T. brucei mouse model using NVP-BGT226 parasite numbers were reduced to under the limits of detection by five consecutive days of treatment. Multiple sequence and structural alignment results indicated high similarities between mTOR and kinetoplastid TORs; the inhibitors are predicted to bind in a similar manner. Taken together, these results indicated that the TOR pathways of parasites have potential for the discovery of novel targets and new potent inhibitors.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania donovani/drug effects , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Trypanosoma brucei brucei/drug effects , Animals , Antiprotozoal Agents/chemistry , Binding Sites , Cell Line , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Humans , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Phosphoinositide-3 Kinase Inhibitors/chemistry , Protein Binding , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/chemistry
8.
Cell Chem Biol ; 25(10): 1242-1254.e8, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30057298

ABSTRACT

Mechanisms underlying cancer cell death caused by inhibitors of subcellular Hsp70 proteins have been elucidated. An inhibitor of Hsp70, apoptozole (Az), is mainly translocated into lysosomes of cancer cells where it induces lysosomal membrane permeabilization, thereby promoting lysosome-mediated apoptosis. Additionally, Az impairs autophagy in cancer cells owing to its ability to disrupt the lysosomal function. However, the Az-triphenylphosphonium conjugate, Az-TPP-O3, localizes mainly to mitochondria of cancer cells where it inhibits the mortalin-p53 interaction and induces mitochondrial outer membrane permeabilization, consequently leading to mitochondria-mediated apoptosis. Unlike Az, Az-TPP-O3 does not have an effect on autophagy in cancer cells. Collectively, the findings indicate that inhibitors of lysosomal Hsp70 and mitochondrial mortalin enhance cancer cell death via distinctively different mechanisms. Additionally, the findings arising from this effort demonstrate that studies aimed at determining subcellular locations and functions of small-molecule modulators provide a deeper understanding of their modes of action in cells.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Lysosomes/drug effects , Mitochondria/drug effects , Benzamides/pharmacology , Cell Line, Tumor , HSP70 Heat-Shock Proteins/metabolism , Humans , Imidazoles/pharmacology , Lysosomes/metabolism , Lysosomes/pathology , Mitochondria/metabolism , Mitochondria/pathology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Organophosphorus Compounds/pharmacology , Small Molecule Libraries/pharmacology
9.
Nat Chem ; 9(7): 667-675, 2017 07.
Article in English | MEDLINE | ID: mdl-28644464

ABSTRACT

Perturbations in cellular chloride concentrations can affect cellular pH and autophagy and lead to the onset of apoptosis. With this in mind, synthetic ion transporters have been used to disturb cellular ion homeostasis and thereby induce cell death; however, it is not clear whether synthetic ion transporters can also be used to disrupt autophagy. Here, we show that squaramide-based ion transporters enhance the transport of chloride anions in liposomal models and promote sodium chloride influx into the cytosol. Liposomal and cellular transport activity of the squaramides is shown to correlate with cell death activity, which is attributed to caspase-dependent apoptosis. One ion transporter was also shown to cause additional changes in lysosomal pH, which leads to impairment of lysosomal enzyme activity and disruption of autophagic processes. This disruption is independent of the initiation of apoptosis by the ion transporter. This study provides the first experimental evidence that synthetic ion transporters can disrupt both autophagy and induce apoptosis.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Chlorides/pharmacology , Quinine/analogs & derivatives , Chlorides/chemistry , Dose-Response Relationship, Drug , HeLa Cells , Humans , Hydrogen-Ion Concentration , Ion Transport/drug effects , Molecular Structure , Quinine/chemistry , Quinine/pharmacology , Structure-Activity Relationship
10.
Sci Rep ; 5: 17642, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26631605

ABSTRACT

The ATPase activities of Hsp70 and Hsc70 are known to be responsible for regulation of various biological processes. However, little is known about the roles of Hsp70 and Hsc70 in modulation of immune responses to antigens. In the present study, we investigated the effect of apoptozole (Az), a small molecule inhibitor of Hsp70 and Hsc70, on immune responses to protein antigens. The results show that mice administered with both protein antigen and Az produce more antibodies than those treated with antigen alone, showing that Az enhances immune responses to administered antigens. Treatment of mice with Az elicits production of antibodies with a high IgG2c/IgG1 ratio and stimulates the release of Th1 and Th2-type cytokines, suggesting that Az activates the Th1 and Th2 immune responses. The observations made in the present study suggest that inhibition of Hsp70 and Hsc70 activities could be a novel strategy designing small molecule-based adjuvants in protein vaccines.


Subject(s)
Antigens/immunology , Benzamides/immunology , Benzamides/pharmacology , HSC70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Imidazoles/immunology , Imidazoles/pharmacology , Adenosine Triphosphatases/antagonists & inhibitors , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Animals , Benzamides/chemistry , Cytokines/blood , Cytokines/metabolism , Enzyme Inhibitors/pharmacology , Female , HSC70 Heat-Shock Proteins/antagonists & inhibitors , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Hemocyanins/immunology , Imidazoles/chemistry , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Mice, Inbred C57BL , Ovalbumin/immunology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Th1 Cells/drug effects , Th1 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/immunology
11.
Chem Biol ; 22(3): 391-403, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25772468

ABSTRACT

The heat shock protein HSP70 plays antiapoptotic and oncogenic roles, and thus its inhibition has been recognized as a potential avenue for anticancer therapy. Here we describe the small molecule, apoptozole (Az), which inhibits the ATPase activity of HSP70 by binding to its ATPase domain and, as a result, induces an array of apoptotic phenotypes in cancer cells. Affinity chromatography provides evidence that Az binds HSP70 but not other types of heat shock proteins including HSP40, HSP60, and HSP90. We also demonstrate that Az induces cancer cell death via caspase-dependent apoptosis by disrupting the interaction of HSP70 with APAF-1. Animal studies indicate that Az treatment retards tumor growth in a xenograft mouse model without affecting mouse viability. These studies suggest that Az will aid the development of new cancer therapies and serve as a chemical probe to gain a better understanding of the diverse functions of HSP70.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Apoptosis/drug effects , Enzyme Inhibitors/pharmacology , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Imidazoles/pharmacology , Neoplasms/drug therapy , Adenosine Triphosphatases/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , HSP70 Heat-Shock Proteins/drug effects , HeLa Cells , Hep G2 Cells , Humans , Male , Mice , Mice, Nude , Neoplasms/enzymology , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding , Random Allocation , Xenograft Model Antitumor Assays
12.
Mol Biosyst ; 9(5): 978-86, 2013 May.
Article in English | MEDLINE | ID: mdl-23385664

ABSTRACT

To date, many efforts have been made to detect lectins in cells by using single imaging techniques. However, only a few dual-labeled glycan-based probes, which integrate advantageous features of two imaging methods to enhance the visualization of biological processes associated with lectins in cells, have been reported. Herein we describe the synthesis of dual fluorescence and magnetic resonance imaging agent conjugated neoglycopeptides and their application in the simultaneous imaging of lectins in mammalian cells. The dual-labeled neoglycopeptides bind to lectins on cell surfaces and subsequently enter the cells via lectin-mediated endocytosis. The results of these efforts show that the novel dual-labeled neoglycopeptides are effective fluorescence and MR imaging agents for monitoring biological processes associated with lectins.


Subject(s)
Cell Membrane/metabolism , Endocytosis , Glycoproteins/metabolism , Lectins/metabolism , Asialoglycoprotein Receptor/chemistry , Asialoglycoprotein Receptor/metabolism , Asialoglycoproteins/chemistry , Asialoglycoproteins/metabolism , Fluorescent Dyes/chemistry , Gadolinium/chemistry , Glycoproteins/chemical synthesis , Glycoproteins/chemistry , Hep G2 Cells , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Lectins/chemistry , Magnetic Resonance Imaging , Microscopy, Confocal , Models, Chemical , Molecular Structure , Protein Binding , Reproducibility of Results , Rhodamines/chemistry , Staining and Labeling/methods
13.
Inorg Chem ; 51(16): 8760-74, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22534151

ABSTRACT

A new fluorescent zinc sensor (HNBO-DPA) consisting of 2-(2'-hydroxy-3'-naphthyl)benzoxazole (HNBO) chromophore and a di(2-picolyl)amine (DPA) metal chelator has been prepared and examined for zinc bioimaging. The probe exhibits zinc-induced fluorescence turn-on without any spectral shifts. Its crystal structure reveals that HNBO-DPA binds a zinc ion in a pentacoordinative fashion through the DPA and HNBO moieties. Steady-state photophysical studies establish zinc-induced deprotonation of the HNBO group. Nanosecond and femtosecond laser flash photolysis and electrochemical measurements provide evidence for zinc-induced modulation of photoinduced electron transfer (PeT) from DPA to HNBO. Thus, the zinc-responsive fluorescence turn-on is attributed to suppression of PeT exerted by deprotonation of HNBO and occupation of the electron pair of DPA, a conclusion that is further supported by density functional theory and time-dependent density functional theory (DFT/TD-DFT) calculations. Under physiological conditions (pH 7.0), the probe displays a 44-fold fluorescence turn-on in response to zinc ions with a K(d) value of 12 pM. The fluorescent response of the probe to zinc ions is conserved over a broad pH range with its excellent selectivity for zinc ions among biologically relevant metal ions. In particular, its sensing ability is not altered by divalent transition metal ions such as Fe(II), Cu(II), Cd(II), and Hg(II). Cell experiments using HNBO-DPA show its suitability for monitoring intracellular zinc ions. We have also demonstrated applicability of the probe to visualize intact zinc ions released from cells that undergo apoptosis. More interestingly, zinc-rich pools in zebrafish embryos are traced with HNBO-DPA during early developmental stages. The results obtained from the in vitro and in vivo imaging studies demonstrate the practical usefulness of the probe to detect zinc ions.


Subject(s)
Amines/chemistry , Benzoxazoles/chemistry , Chelating Agents/chemical synthesis , Fluorescent Dyes/chemical synthesis , Picolinic Acids/chemistry , Protons , Zinc/analysis , Animals , Crystallography, X-Ray , Electrochemical Techniques , Electron Transport , Embryo, Nonmammalian , Fluorescence , Hydrogen-Ion Concentration , Kinetics , Molecular Imaging , Molecular Structure , Photolysis , Quantum Theory , Sensitivity and Specificity , Zebrafish
14.
J Hazard Mater ; 209-210: 92-8, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22301079

ABSTRACT

Although 1,2-dibromoethane (EDB) is a common groundwater contaminant, there is the lack of knowledge surrounding EDB biodegradation, especially under aerobic conditions. We have performed an extensive microcosm study to investigate the biodegradation of EDB under simulated in situ and biostimulated conditions. The materials for soil microcosms were collected from an EDB-contaminated aquifer at the Massachusetts Military Reservation in Cape Cod, MA. This EDB plume has persisted for nearly 40 years in both aerobic and anaerobic EDB zones of the aquifer. Microcosms were constructed under environmentally relevant conditions (field EDB and DO concentrations; incubated at 12°C). The results showed that natural attenuation occurred under anaerobic conditions but not under aerobic conditions, explaining why aerobic EDB contamination is so persistent. EDB degradation rates were greater under biostimulated conditions for both the aerobic and anaerobic microcosms. Particularly for aerobic biostimulation, methane-amended microcosms degraded EDB, on average, at a first order rate eight times faster than unamended microcosms. The best performing replicate achieved an EDB degradation rate of 7.0 yr(-1) (half-life (t(1/2))=0.10 yr). Residual methane concentrations and the emergence of methanotrophic bacteria, measured by culture independent bacterial analysis, provided strong indications that EDB degradation in aerobic methane-amended microcosms occurred via cometabolic degradation. These results indicate the potential for enhanced natural attenuation of EDB and that methane could be considered co-substrate for EDB bioremediation for the EDB-contaminated groundwater in aerobic zone.


Subject(s)
Biodegradation, Environmental , Ethylene Dibromide/metabolism , Water Microbiology , Water Pollutants, Chemical/metabolism , Aerobiosis , Anaerobiosis
15.
Chem Soc Rev ; 41(8): 3245-63, 2012 Apr 21.
Article in English | MEDLINE | ID: mdl-22293658

ABSTRACT

Autophagy or self-eating is a complicated cellular process that is involved in protein and organelle digestion occurring via a lysosome-dependent pathway. This process is of great importance in maintaining normal cellular homeostasis. However, disruption of autophagy is closely associated with various human diseases such as cancer, neurodegenerative disorders, heart disease and pathogen infection. Therefore, small molecules that modulate autophagy can be employed to dissect this complex process and ultimately could have high potential for the treatment of a variety of diseases. This critical review discusses general aspects of autophagy, autophagy-associated diseases and autophagy regulators for biological research and therapeutic applications (207 references).


Subject(s)
Autophagy/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Animals , Disease , Drug Evaluation, Preclinical , Humans
16.
J Am Chem Soc ; 133(50): 20267-76, 2011 Dec 21.
Article in English | MEDLINE | ID: mdl-22074182

ABSTRACT

Cystic fibrosis transmembrane conductance regulator (CFTR) is a cell-surface anion channel that permeates chloride and bicarbonate ions. The most frequent mutation of CFTR that causes cystic fibrosis is the deletion of phenylalanine at position 508 (ΔF508), which leads to defects in protein folding and cellular trafficking to the plasma membrane. The lack of the cell-surface CFTR results in a reduction in the lifespan due to chronic lung infection with progressive deterioration of lung function. Hsc70 plays a crucial role in degradation of mutant CFTR by the ubiquitin-proteasome system. To date, various Hsc70 inhibitors and transcription regulators have been tested to determine whether they correct the defective activity of mutant CFTR. However, they exhibited limited or questionable effects on restoring the chloride channel activity in cystic fibrosis cells. Herein, we show that a small molecule apoptozole (Az) has high cellular potency to promote membrane trafficking of mutant CFTR and its chloride channel activity in cystic fibrosis cells. Results from affinity chromatography and ATPase activity assay indicate that Az inhibits the ATPase activity of Hsc70 by binding to its ATPase domain. In addition, a ligand-directed protein labeling and molecular modeling studies also suggest the binding of Az to an ATPase domain, in particular, an ATP-binding pocket. It is proposed that Az suppresses ubiquitination of ΔF508-CFTR maybe by blocking interaction of the mutant with Hsc70 and CHIP, and, as a consequence, it enhances membrane trafficking of the mutant.


Subject(s)
Adenosine Triphosphatases/metabolism , Benzamides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , HSC70 Heat-Shock Proteins/metabolism , Imidazoles/metabolism , Mutation , Adenosine Triphosphatases/chemistry , Benzamides/chemistry , Binding Sites , Cell Line , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Imidazoles/chemistry , Magnetic Resonance Spectroscopy , Protein Transport , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Ubiquitination
17.
Chem Asian J ; 6(8): 2107-13, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21634013

ABSTRACT

A facile and efficient solid-phase synthesis of linear peptide-based glycoclusters with various valences and different spatial arrangements of the sugar ligands is described. The synthetic strategy includes 1) solid-phase synthesis of fluorophore-labeled, alkyne-containing peptides, 2) coupling of azide-linked, unprotected mono-, di-, and trisaccharides to the alkyne-conjugated peptides on a solid support by click chemistry, and 3) release of the fluorophore-labeled glycoclusters from the solid support. By using this methodology, 32 fluorescent glycoclusters with a valence ranging from 1 to 4 and different spatial arrangements of the sugar ligands were prepared. Lectin-binding properties of the glycoclusters were initially examined by using microarrays immobilized by various lectins. These glycoclusters were then employed to detect the cell-surface carbohydrate-binding proteins in bacteria. Finally, the uptake of glycoclusters by mammalian cells through receptor-mediated endocytosis was evaluated. The results, obtained from the in vitro and in vivo studies, indicate that the binding affinities toward immobilized and cell-surface proteins are highly dependent on the valence and spatial arrangements of the sugar ligands in glycoclusters.


Subject(s)
Click Chemistry/methods , Fluorescent Dyes/chemistry , Glycopeptides/chemistry , Glycopeptides/metabolism , Lectins/metabolism , Click Chemistry/economics , Endocytosis , Escherichia coli/chemistry , Escherichia coli Proteins/analysis , Glycopeptides/chemical synthesis , Hep G2 Cells , Humans , Lactose/chemistry , Lactose/metabolism , Protein Array Analysis , Protein Binding
18.
Mol Cells ; 31(6): 573-8, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21533547

ABSTRACT

During orthodontic tooth movement, local hypoxia and enhanced osteoclastogenesis are observed in the compression side of periodontal tissues. The receptor activator of nuclear factor-κB ligand (RANKL) is an osteoblast/stromal cell-derived factor that is essential for osteoclastogenesis. In this study, we examined the effect of hypoxia on RANKL expression in human periodontal ligament fibroblasts (PDLFs) to investigate the relationship between local hypoxia and enhanced osteoclastogenesis in the compression side of periodontal tissues. Hypoxia significantly enhanced the levels of RANKL mRNA and protein as well as hypoxia inducible factor-1α (HIF-1α) protein in PDLFs. Constitutively active HIF-1α alone significantly increased the levels of RANKL expression in PDLFs under normoxic conditions, whereas dominant negative HIF-1α blocked hypoxia-induced RANKL expression. To investigate further whether HIF-1α directly regulates RANKL transcription, a luciferase reporter assay was performed using the reporter vector containing the RANKL promoter sequence. Exposure to hypoxia or overexpression of constitutively active HIF-1α significantly increased RANKL promoter activity, whereas dominant negative HIF-1α blocked hypoxia-induced RANKL promoter activity. Furthermore, mutations of putative HIF-1α binding elements in RANKL promoter prevented hypoxia-induced RANKL promoter activity. The results of chromatin immunoprecipitation showed that hypoxia or constitutively active HIF-1α increased the DNA binding of HIF-1α to RANKL promoter. These results suggest that HIF-1α mediates hypoxia-induced up-regulation of RANKL expression and that in compression side periodontal ligament, hypoxia enhances osteoclastogenesis, at least in part, via an increased RANKL expression in PDLFs.


Subject(s)
Fibroblasts/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Periodontal Ligament/cytology , RANK Ligand/genetics , Cell Hypoxia , Cells, Cultured , Chromatin Immunoprecipitation , Genes, Reporter , Humans , Luciferases, Renilla/biosynthesis , Luciferases, Renilla/genetics , Periodontal Ligament/metabolism , Promoter Regions, Genetic , Protein Binding , RANK Ligand/metabolism , Transcription, Genetic , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
19.
Biochem Biophys Res Commun ; 408(3): 399-404, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21514273

ABSTRACT

Tumor necrosis factor-α (TNF-α) is known to suppress adipocyte differentiation via a ß-catenin-dependent pathway. However, the mechanisms by which TNF-α induces Wnt/ß-catenin signaling pathway in adipocytes is unclear. Msx2, a homeobox transcription factor, is known to increase osteoblast differentiation through activation of the Wnt/ß-catenin pathway. Therefore, in the present study, we investigated whether TNF-α activates the Wnt/ß-catenin signaling pathway via the induction of Msx2 expression in 3T3-L1 preadipocytes. We found that TNF-α transiently increased Msx2 expression as well as the expression of canonical Wnt signaling molecules, including Wnt3a, Wnt7a, Wnt7b, Wnt10b, low-density lipoprotein receptor-related protein 5 (LRP5) and T-cell factor 1 (TCF1). Furthermore, TNF-α increased ß-catenin/TCF-dependent transcriptional activity. To better understand the role of Msx2 in Wnt signaling, we examined the effects of Msx2 overexpression and knockdown on Wnt/ß-catenin signaling. Msx2 overexpression alone significantly increased the levels of Wnt3a, Wnt7a, Wnt7b, Wnt10b, LRP5 and TCF1 expression, whereas knockdown of Msx2 using small interfering RNA prevented TNF-α-induced expression of Wnt signaling molecules. Taken together, the results of this study indicate that TNF-α enhances the Wnt/ß-catenin signaling pathway by inducing Msx2 expression, which in turn suppresses adipocytic differentiation.


Subject(s)
Adipocytes/metabolism , Adipogenesis , Homeodomain Proteins/metabolism , Tumor Necrosis Factor-alpha/physiology , Wnt Proteins/metabolism , beta Catenin/metabolism , 3T3-L1 Cells , Adipocytes/drug effects , Adipogenesis/drug effects , Animals , Gene Knockdown Techniques , Homeodomain Proteins/genetics , Humans , Mice , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/pharmacology
20.
Bone ; 49(2): 242-9, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21514407

ABSTRACT

Nuclear factor of activated T cell (NFAT) is a key transcription factor for receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. However, it is unclear whether NFAT plays a role in the expression of RANKL in osteoblasts. High extracellular calcium ([Ca(2+)](o)) increases intracellular calcium, enhances RANKL expression in osteoblasts/stromal cells, and induces osteoclastogenesis in a coculture of osteoblasts and hematopoietic bone marrow cells. Because intracellular calcium signaling activates the calcineurin/NFAT pathway, we examined the role of NFAT activation on high [Ca(2+)](o)-induced RANKL expression in MC3T3-E1 subclone 4 (MC4) cells. Among the family of NFAT transcription factors, expression of NFATc1 and NFATc3, but not NFATc2, NFATc4 or NFAT5, was observed in MC4 cells. High [Ca(2+)](o) increased the expression levels of NFATc1, NFATc3 and RANKL. Cyclosporin A and FK506, inhibitors of calcineurin phosphatase, blocked high [Ca(2+)](o)-induced expression of NFAT and RANKL. Knockdown of NFATc1 and NFATc3 by siRNA prevented high [Ca(2+)](o)-induced RANKL expression, whereas overexpression of NFATc1 and NFATc3 induced RANKL expression. Furthermore, overexpressed NFATc1 upregulated NFATc3 expression, but NFATc1 knockdown decreased NFATc3 expression. Chromatin immunoprecipitation and reporter assay results showed that NFATc3, but not NFATc1, directly binds to the RANKL promoter and stimulates RANKL expression. In summary, these results demonstrate that high [Ca(2+)](o) increases expression of RANKL via activation of the calcineurin/NFAT pathway in osteoblasts. In addition, high [Ca(2+)](o) induces the activation and expression of NFATc1; NFATc3 expression and activity are subsequently increased; and NFATc3 directly binds to the RANKL promoter to increase its expression.


Subject(s)
Calcium/pharmacology , NFATC Transcription Factors/metabolism , Osteoblasts/drug effects , Osteoblasts/metabolism , Animals , Blotting, Western , Calcineurin/genetics , Calcineurin/metabolism , Cell Line , Chromatin Immunoprecipitation , Mice , Mutagenesis, Site-Directed , NFATC Transcription Factors/genetics , RANK Ligand/genetics , RANK Ligand/metabolism , RNA, Small Interfering , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...