Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 2020: 2905362, 2020.
Article in English | MEDLINE | ID: mdl-32685089

ABSTRACT

Ultraviolet B (UVB) irradiation is major causative factor in skin aging. The aim of the present study was to investigate the protective effect of a 50% ethanol extract from Nypa fruticans (NF50E) against UVB-induced skin aging. The results indicated that NF50E exerted potent antioxidant activity (IC50 = 17.55 ± 1.63 and 10.78 ± 0.63 µg/mL for DPPH and ABTS-radical scavenging activity, respectively) in a dose-dependent manner. High-performance liquid chromatography revealed that pengxianencin A, protocatechuic acid, catechin, chlorogenic acid, epicatechin, and kaempferol were components of the extract. In addition, the extract exhibited elastase inhibitory activity (IC50 = 17.96 ± 0.39 µg/mL). NF50E protected against UVB-induced HaCaT cell death and strongly suppressed UVB-stimulated cellular reactive oxygen species generation without cellular toxicity. Moreover, topical application of NF50E mitigated UVB-induced photoaging lesions including skin erythema and skin thickness in BALB/C mice. NF50E treatment inhibited UVB-induced collagen degradation as well as MMP-1 and IL-1ß expressions and significantly stimulated SIRT1 expression. Furthermore, the extract treatment markedly suppressed the activation of NF-κB and AP-1 (p-c-Jun) by deactivating the p38 and JNK proteins. Taken together, current data suggest that NF50E exhibits potent antioxidant potential and protection against photoaging by attenuating MMP-1 activity and collagen degradation possibly through the downregulation of MAPK/NF-κB/AP-1 signaling and SIRT1 activation.


Subject(s)
Matrix Metalloproteinase 1/metabolism , Plant Extracts/chemistry , Skin Aging/drug effects , Ultraviolet Rays/adverse effects , Animals , Disease Models, Animal , Humans , Mice , Signal Transduction
2.
Food Sci Biotechnol ; 29(5): 705-715, 2020 May.
Article in English | MEDLINE | ID: mdl-32419969

ABSTRACT

Medicinal herbs comprise of heavy microbial contaminations. This study aimed to assess microbial hazards including foodborne pathogens in 20 commercial medicinal herbs, Cnidii Rhizoma (C1-C10) and Alismatis Rhizoma (T1-T10) as well as to evaluate irradiation effects of E-beam on microbial load and detection chracteristics. Four samples (C5, C10, T1, T8) from both herbs with higher microbial load were selected for evaluating the irradiation effect of E-beam (up to 10 kGy) on microbial load and radiation-induced changes in detection markers by standard methods (Codex, Korean Food Code), such as direct epifluorescent filter technique/aerobic plate count (DEFT/APC), photostimulated luminescence (PSL), thermoluminescence (TL), and electron spin resonance (ESR). DEFT/APC revealed non-evidence of pre-sterilization of all samples. PSL differentiated irradiated samples (1, 5, and 10 kGy) of both herbs from non-irradiated (control: 0 kGy). Both TL and ESR methods validated PSL screening results by detecting radiation-induced markers from E-beam irradiated medicinal herbs.

3.
J Med Food ; 22(10): 1067-1077, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31403348

ABSTRACT

To reduce microbial loads in medicinal herbs, Cnidii Rhizoma and Alismatis Rhizoma were subjected to electron-beam (e-beam) irradiation at doses (≤10 kGy) as permitted by the Korean Food Code. The effects of e-beam irradiation on the microbial load, stability of the active components, and anti-inflammatory activity of medicinal herbs were determined. We observed that the total aerobic bacteria (TAB; 4.0-7.0 log CFU/g), yeasts and molds (Y&M; 3.3-6.8 log CFU/g), and coliform counts (CC; 3.2-3.8 log CFU/g) in both herb samples were effectively reduced in a dose-dependent manner, resulting in acceptable levels of <3.0 log CFU/g in TAB and Y&M and negative in CC at 10 kGy irradiation. The concentration of the active components (0.87-4.22 mg/g) of Cnidii Rhizoma, including z-ligustilide, chlorogenic acid, senkyunolide A, and ferulic acid, in order of prevalence and those (0.86-2.76 mg/g) of Alismatis Rhizoma, including Alisol B acetate and Alisol B, were not changed at irradiation doses of ≤10 kGy. The extracts of e-beam irradiated Cnidii Rhizoma and Alismatis Rhizoma showed a reduced production of inflammation-related factors, such as nitric oxide, prostaglandin E2, interleukin (IL)-1ß, and IL-6, in a concentration-dependent manner, which was induced by lipopolysaccharide in RAW 264.7 cell. However, there was no significant difference observed at e-beam irradiation doses of 0, 1, 5, and 10 kGy. Thus, we confirm that e-beam irradiation up to 10 kGy was effective for the control of microbial load in Cnidii Rhizoma and Alismatis Rhizoma without causing considerable changes in their major active components and anti-inflammatory activity. The results show the potential of e-beam application for sanitization of medicinal herbs.


Subject(s)
Alisma/chemistry , Anti-Inflammatory Agents/chemistry , Apiaceae/chemistry , Bacterial Load , Rhizome/chemistry , Alisma/microbiology , Alisma/radiation effects , Animals , Anti-Inflammatory Agents/pharmacology , Apiaceae/microbiology , Apiaceae/radiation effects , Dinoprostone/metabolism , Electrons , Interleukins/metabolism , Mice , Nitric Oxide/metabolism , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plants, Medicinal/chemistry , Plants, Medicinal/microbiology , Plants, Medicinal/radiation effects , RAW 264.7 Cells , Rhizome/microbiology , Rhizome/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...