Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Eng ; 80: 66-77, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37709005

ABSTRACT

Chinese hamster ovary (CHO) cells are the preferred mammalian host cells for therapeutic protein production that have been extensively engineered to possess the desired attributes for high-yield protein production. However, empirical approaches for identifying novel engineering targets are laborious and time-consuming. Here, we established a genome-wide CRISPR/Cas9 screening platform for CHO-K1 cells with 111,651 guide RNAs (gRNAs) targeting 21,585 genes using a virus-free recombinase-mediated cassette exchange-based gRNA integration method. Using this platform, we performed a positive selection screening under hyperosmotic stress conditions and identified 180 genes whose perturbations conferred resistance to hyperosmotic stress in CHO cells. Functional enrichment analysis identified hyperosmotic stress responsive gene clusters, such as tRNA wobble uridine modification and signaling pathways associated with cell cycle arrest. Furthermore, we validated 32 top-scoring candidates and observed a high rate of hit confirmation, demonstrating the potential of the screening platform. Knockout of the novel target genes, Zfr and Pnp, in monoclonal antibody (mAb)-producing recombinant CHO (rCHO) cells and bispecific antibody (bsAb)-producing rCHO cells enhanced their resistance to hyperosmotic stress, thereby improving mAb and bsAb production. Overall, the collective findings demonstrate the value of the screening platform as a powerful tool to investigate the functions of genes associated with hyperosmotic stress and to discover novel targets for rational cell engineering on a genome-wide scale in CHO cells.


Subject(s)
CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , Cricetinae , Animals , Cricetulus , CHO Cells , Genome , Antibodies, Monoclonal
2.
Metab Eng ; 69: 73-86, 2022 01.
Article in English | MEDLINE | ID: mdl-34775077

ABSTRACT

With the advent of novel therapeutic proteins with complex structures, cellular bottlenecks in secretory pathways have hampered the high-yield production of difficult-to-express (DTE) proteins in CHO cells. To mitigate their limited secretory capacity, recombinant CHO (rCHO) cells were engineered to express Blimp1, a master regulator orchestrating B cell differentiation into professional secretory plasma cells, using the streamlined CRISPR/Cas9-based recombinase-mediated cassette exchange landing pad platform. The expression of Blimp1α or Blimp1ß in rCHO cells producing DTE recombinant human bone morphogenetic protein-4 (rhBMP-4) increased specific rhBMP-4 productivity (qrhBMP-4). However, since Blimp1α expression suppressed cell growth more significantly than Blimp1ß expression, only Blimp1ß expression enhanced rhBMP-4 yield. In serum-free suspension culture, Blimp1ß expression significantly increased the rhBMP-4 concentration (>3-fold) and qrhBMP-4 (>4-fold) without significant increase in hBMP-4 transcript levels. In addition, Blimp1ß expression facilitated mature rhBMP-4 secretion by active proteolytic cleavage in the secretory pathway. Transcriptomic profiling (RNA-seq) revealed global changes in gene expression patterns that promote protein processing in secretory organelles. In-depth integrative analysis of the current RNA-seq data, public epigenome/RNA-seq data, and in silico analysis identified 45 potential key regulators of Blimp1 that are consistently up- or down-regulated in Blimp1ß expressing rCHO cells and plasma cells. Blimp1ß expression also enhanced the production of easy-to-express monoclonal antibodies (mAbs) and modulated the expression of key regulators in rCHO cells producing mAb. Taken together, the results show that controlled expression of Blimp1ß improves the production capacity of rCHO cells by regulating secretory machinery and suggest new opportunities for engineering promising targets that are resting in CHO cells.


Subject(s)
Plasma Cells , Transcription Factors , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Plasma Cells/metabolism , Recombinant Proteins , Transcription Factors/genetics
3.
Biotechnol J ; 16(5): e2000351, 2021 May.
Article in English | MEDLINE | ID: mdl-33314785

ABSTRACT

Human embryonic kidney 293 (HEK293) cells with glycosylation machinery have emerged as an alternative host cell line for stable expression of therapeutic glycoproteins. To characterize dihydrofolate reductase/methotrexate (DHFR/MTX)-mediated gene amplification in HEK293 cells, an expression vector containing dhfr and monoclonal antibody (mAb) gene was transfected into dhfr-deficient HEK293 cells generated by knocking out dhfr and dhfrl1 in HEK293E cells. Due to the improved selection stringency, mAb-producing parental cell pools could be generated in the absence of MTX. When subjected to stepwise selection for increasing MTX concentrations such as 1, 10, and 100 nM, there was an increase in the specific mAb productivity (qmAb ) of the parental cell pool upon DHFR/MTX-mediated gene amplification. High producing (HP) clones with a qmAb of more than 2-fold of the corresponding cell pool could be obtained using the limiting dilution method. The qmAb of most HP clones obtained from cell pools at elevated MTX concentrations significantly decreased during long-term culture (3 months) in the absence of selection pressure. However, some HP clones could maintain high qmAb during long-term culture. Taken together, a stable HP recombinant HEK293 cell line can be established using DHFR/MTX-mediated gene amplification together with dhfr- HEK293 host cells.


Subject(s)
Antibodies, Monoclonal , Tetrahydrofolate Dehydrogenase , Animals , Antibodies, Monoclonal/genetics , CHO Cells , Cricetinae , Gene Amplification , HEK293 Cells , Humans , Kidney , Methotrexate/pharmacology , Tetrahydrofolate Dehydrogenase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...