Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 34(8): e2101730, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34908193

ABSTRACT

Current-induced control of magnetization in ferromagnets using spin-orbit torque (SOT) has drawn attention as a new mechanism for fast and energy efficient magnetic memory devices. Energy-efficient spintronic devices require a spin-current source with a large SOT efficiency (ξ) and electrical conductivity (σ), and an efficient spin injection across a transparent interface. Herein, single crystals of the van der Waals (vdW) topological semimetal WTe2  and vdW ferromagnet Fe3 GeTe2 are used to satisfy the requirements in their all-vdW-heterostructure with an atomically sharp interface. The results exhibit values of ξ ≈ 4.6 and σ ≈ 2.25 × 105  Ω-1 m-1 for WTe2 . Moreover, the significantly reduced switching current density of 3.90 × 106 A cm-2 at 150 K is obtained, which is an order of magnitude smaller than those of conventional heavy-metal/ferromagnet thin films. These findings highlight that engineering vdW-type topological materials and magnets offers a promising route to energy-efficient magnetization control in SOT-based spintronics.

2.
ACS Appl Mater Interfaces ; 10(29): 24549-24553, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29944824

ABSTRACT

High-performance lithium-ion batteries (LIBs) are in increasing demand for a variety of applications in rapidly growing energy-related fields including electric vehicles. To develop high-performance LIBs, it is necessary to comprehensively understand the degradation mechanism of the LIB electrodes. From this viewpoint, it is crucial to investigate how the electrical properties of LIB electrodes change under charging and discharging. Here, we probe the local electrical properties of LIB electrodes with nanoscale resolution by scanning spreading resistance microscopy (SSRM). Via quantitative and comparative SSRM measurements on pristine and degraded LIB anodes of Si-C composites blended with graphite (Gr) particles, the electrical degradation of the LIB anodes is visualized. The electrical conductivity of the Si-C composite particles considerably degraded over 300 cycles of charging and discharging, whereas the Gr particles maintained their conductivity.

3.
ACS Appl Mater Interfaces ; 8(45): 30980-30984, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-27787978

ABSTRACT

To employ Li-based batteries to their full potential in a wide range of energy-storage applications, their capacity and performance stability must be improved. Si is a viable anode material for Li-based batteries in electric vehicles due to its high theoretical capacity and good economic feasibility. However, it suffers from physical and chemical degradation, leading to unstable electrochemical performance and preventing its incorporation in new Li-based battery systems. Herein, we applied a poly(vinyl alcohol)-PO4 protective coating for Si-graphite anodes and confirmed an improvement in the electrochemical performance. The experimental results revealed that the polymer acts as a binder to alleviate the pulverization of the electrode. Furthermore, the oxide coating reduces the loss of Li2O, which has high ionic conductivity, during operation, resulting in the formation of a stable solid electrolyte interphase. Our findings suggest that a stable and ion-conducting anode/interphase can be developed by applying an oxide and polymer coating in combined approach. Therefore, this study is expected to provide a basis for the further development and design of high-performance Li-based battery systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...