Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(18)2022 09 07.
Article in English | MEDLINE | ID: mdl-36139366

ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs that play an important role in regulating gene expression at a posttranscriptional level. As one of the first discovered oncogenic miRNAs, microRNA-21 (miR-21) has been highlighted for its critical role in cancers, such as glioblastoma, pancreatic adenocarcinoma, non-small cell lung cancer, and many others. MiR-21 targets many vital components in a wide range of cancers and acts on various cellular processes ranging from cancer stemness to cell death. Expression of miR-21 is elevated within cancer tissues and circulating miR-21 is readily detectable in biofluids, making it valuable as a cancer biomarker with significant potential for use in diagnosis and prognosis. Advances in RNA-based therapeutics have revealed additional avenues by which miR-21 can be utilized as a promising target in cancer. The purpose of this review is to outline the roles of miR-21 as a key modulator in various cancers and its potential as a therapeutic target.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Pancreatic Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Humans , Lung Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism
2.
Int J Mol Sci ; 22(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34638572

ABSTRACT

Spinal muscular atrophy (SMA) is caused by homozygous survival of motor neurons 1 (SMN1) gene deletion, leaving a duplicate gene, SMN2, as the sole source of SMN protein. However, a defect in SMN2 splicing, involving exon 7 skipping, results in a low level of functional SMN protein. Therefore, the upregulation of SMN protein expression from the SMN2 gene is generally considered to be one of the best therapeutic strategies to treat SMA. Most of the SMA drug discovery is based on synthetic compounds, and very few natural compounds have been explored thus far. Here, we performed an unbiased mechanism-independent and image-based screen of a library of microbial metabolites in SMA fibroblasts using an SMN-specific immunoassay. In doing so, we identified brefeldin A (BFA), a well-known inhibitor of ER-Golgi protein trafficking, as a strong inducer of SMN protein. The profound increase in SMN protein was attributed to, in part, the rescue of the SMN2 pre-mRNA splicing defect. Intriguingly, BFA increased the intracellular calcium concentration, and the BFA-induced exon 7 inclusion of SMN2 splicing, was abrogated by the depletion of intracellular calcium and by the pharmacological inhibition of calcium/calmodulin-dependent kinases (CaMKs). Moreover, BFA considerably reduced the expression of Tra2-ß and SRSF9 proteins in SMA fibroblasts and enhanced the binding of PSF and hnRNP M to an exonic splicing enhancer (ESE) of exon 7. Together, our results demonstrate a significant role for calcium and its signaling on the regulation of SMN splicing, probably through modulating the expression/activity of splicing factors.


Subject(s)
Calcium Signaling/genetics , Gene Expression/genetics , Motor Neurons/physiology , Cell Line , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/physiology , Exons/genetics , Fibroblasts/physiology , Golgi Apparatus/genetics , Golgi Apparatus/physiology , HEK293 Cells , Humans , Muscular Atrophy, Spinal/genetics , Protein Transport/genetics , Protein Transport/physiology , RNA Splicing/genetics , RNA, Messenger/genetics , SMN Complex Proteins/genetics
3.
Cancers (Basel) ; 13(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430103

ABSTRACT

Leptomeningeal metastasis (LM) is a fatal and rare complication of cancer in which the cancer spreads via the cerebrospinal fluid (CSF). At present, there is no definitive treatment or diagnosis for this deleterious disease. In this study, we systemically and quantitatively investigated biased expression of key small non-coding RNA (smRNA) subpopulations from LM CSF extracellular vesicles (EVs) via a unique smRNA sequencing method. The analyzed subpopulations included microRNA (miRNA), Piwi-interacting RNA (piRNA), Y RNA, small nuclear RNA (snRNA), small nucleolar RNAs (snoRNA), vault RNA (vtRNA), novel miRNA, etc. Here, among identified miRNAs, miR-21, which was already known to play an essential oncogenic role in tumorigenesis, was thoroughly investigated via systemic biochemical, miR-21 sensor, and physiological cell-based approaches, with the goal of confirming its functionality and potential as a biomarker for the pathogenesis and diagnosis of LM. We herein uncovered LM CSF extravesicular smRNAs that may be associated with LM-related complications and elucidated plausible pathways that may mechanistically contribute to LM progression. In sum, the analyzed smRNA subpopulations will be useful as targets for the development of therapeutic and diagnostic strategies for LM and LM-related complications.

SELECTION OF CITATIONS
SEARCH DETAIL
...