Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(48): 43522-43530, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36506126

ABSTRACT

Bimetallic oxides have significant attraction as supercapacitor electrode materials due to their highly reversible redox processes, which are commonly associated with their surface chemistry and morphological features. Here, we report the synthesis, characterization, and electrochemical evaluation of bimetallic oxides with different molar compositions of Co and V (Co0.6V0.4, Co0.64V0.36, Co0.68V0.32, and Co0.7V0.3 denoted as S1, S2, S3, and S4 samples, respectively). The materials were synthesized by a modified solvothermal method using glycerol as a stabilizing agent, characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray fluorescence spectroscopy, N2 adsorption isotherms, cyclic voltammetry, and galvanostatic charged/discharged in a three-electrode cell. The role of the CoV oxide compositions on the pseudocapacitive properties was studied through the analysis of the energy storage mechanism following the power law and Dunn's methodology to obtain the b values. An important finding of this work is that CoV oxides exhibited electrochemical characteristics of a pseudocapacitive electrode material even though the charge storage occurs in bulk. This behavior is consistent with the pseudocapacitance generated by redox processes, showing b values of 0.67, 0.53, 0.75, and 0.84, with a capacitive current contribution of 74, 74, 63, and 70% analyzed at a scan rate of 1 mV s-1, for S4, S3, S2, and S1 samples, respectively. Co0.7V0.3 (S4) oxide presented the highest specific capacitance of 299 F g-1 at 0.5 A g-1 with a Coulombic efficiency of 93% tested at 4 A g-1. The better electrochemical performance of this sample was attributed to the synergistic effect of the Co and V atoms since a minimum amount of V in the structure may distort the crystal lattice and improve the electrolyte diffusion, in addition to the formation of several oxidation states due to reduction of V5+, including V3+ and V4+ as well as to the formation of the metastable V4O9.

2.
ACS Omega ; 7(24): 20860-20871, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35755396

ABSTRACT

PtPd bimetallic catalysts supported on hierarchical porous carbon (HPC) with different porous sizes were developed for the oxygen reduction reaction (ORR) toward fuel cell applications. The HPC pore size was controlled by using SiO2 nanoparticles as a template with different sizes, 287, 371, and 425 nm, to obtain three HPC materials denoted as HPC-1, HPC-2, and HPC-3, respectively. PtPd/HPC catalysts were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy. The electrochemical performance was examined by cyclic voltammetry and linear sweep voltammetry. PtPd/HPC-2 turned out to be the most optimal catalyst with an electroactive surface area (ESA) of 40.2 m2 g-1 and a current density for ORR of -1285 A g-1 at 2 mV s-1 and 1600 rpm. In addition, we conducted a density functional theory computational study to examine the interactions between a PtPd cluster and a graphitic domain of HPC, as well as the interaction between the catalyst and the oxygen molecule. These results reveal the strong influence of the porous size (in HPC) and ESA values (in PtPd nanoparticles) in the mass transport process which rules the electrochemical performance.

3.
ACS Omega ; 5(50): 32149-32159, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33376853

ABSTRACT

High-surface-area carbon-based capacitors exhibit significant advantages relative to conventional graphite-based systems, such as high power density, low weight, and mechanical flexibility. In this work, novel porous carbon-based electrodes were obtained from commercial cotton fibers (CFs) impregnated with graphene oxide (GO) at different dipping times. A subsequent thermal treatment under inert atmosphere conditions enables the synthesis of electrodes based on reduced GO (RGO) supported on carbon fibers. Those synthetized with 15 min and 30 min of dipping time displayed high specific capacitance given their optimal micro-/ mesoporosity ratio. Particularly, the RGO/CCF15A supercapacitor reports a remarkable specific capacitance of 74.1 F g-1 at 0.2 A g-1 and a high cycling stability with a 97.7% capacitive retention, making this electrode a promising candidate for supercapacitor design. Finally, we conducted a density functional theory study to obtain deeper information about the driving forces leading to the GO/CF structures.

4.
J Microbiol ; 51(2): 213-21, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23625223

ABSTRACT

The sulfatase family involves a group of enzymes with a large degree of similarity. Until now, sixteen human sulfatases have been identified, most of them found in lysosomes. Human deficiency of sulfatases generates various genetic disorders characterized by abnormal accumulation of sulfated intermediate compounds. Mucopolysaccharidosis type II is characterized by the deficiency of iduronate 2-sulfate sulfatase (IDS), causing the lysosomal accumulation of heparan and dermatan sulfates. Currently, there are several cases of genetic diseases treated with enzyme replacement therapy, which have generated a great interest in the development of systems for recombinant protein expression. In this work we expressed the human recombinant IDS-Like enzyme (hrIDS-Like) in Escherichia coli DH5α. The enzyme concentration revealed by ELISA varied from 78.13 to 94.35 ng/ml and the specific activity varied from 34.20 to 25.97 nmol/h/mg. Western blotting done after affinity chromatography purification showed a single band of approximately 40 kDa, which was recognized by an IgY polyclonal antibody that was developed against the specific peptide of the native protein. Our 100 ml-shake-flask assays allowed us to improve the enzyme activity seven fold, compared to the E. coli JM109/pUC13-hrIDS-Like system. Additionally, the results obtained in the present study were equal to those obtained with the Pichia pastoris GS1115/pPIC-9-hrIDS-Like system (3 L bioreactor scale). The system used in this work (E. coli DH5α/pGEX-3X-hrIDS-Like) emerges as a strategy for improving protein expression and purification, aimed at recombinant protein chemical characterization, future laboratory assays for enzyme replacement therapy, and as new evidence of active putative sulfatase production in E. coli.


Subject(s)
Escherichia coli K12/genetics , Gene Expression , Glycoproteins/genetics , Glycoproteins/isolation & purification , Escherichia coli K12/metabolism , Glycoproteins/chemistry , Glycoproteins/metabolism , Humans , Iduronic Acid/analogs & derivatives , Iduronic Acid/metabolism , Kinetics , Molecular Weight , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...