Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 53(10): 5671-5677, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31013071

ABSTRACT

Impervious surfaces, especially in urban environments, are coated with a film composed of a complex mixture of substances, referred to as urban grime. Despite its ubiquity, the factors that dictate urban grime composition are still not well understood. Here, we present the first study of the seasonal variation in composition of water-soluble inorganic ions present in urban grime, performed by analyzing samples collected in Toronto for 4-week intervals over the course of a year. A clear seasonality in the composition is evident, with NaCl dominating in the winter months and Ca2+ and NO3- dominant in the summer. We compare the grime composition to the water-soluble ion composition of PM2.5 and PM10 in order to infer chemistry occurring within the grime and find evidence that chemistry occurring within the urban grime matrix could provide a source of ClNO2 and NH3 to the urban atmosphere. The uptake of water by urban grime also shows a clear seasonality, which may be driven by the changing proportions of nitrate salts and/or oxidized organic compounds over the year.


Subject(s)
Air Pollutants , Atmosphere , Environmental Monitoring , Particulate Matter , Seasons , Water
2.
Environ Sci Technol ; 49(21): 12688-96, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26422664

ABSTRACT

Deposition of atmospheric constituents--either gas phase or particulate--onto urban impervious surfaces gives rise to a thin "urban grime" film. The area exposed by these impervious surfaces in a typical urban environment is comparable to, or greater than, that of particles present in the urban boundary layer; however, it is largely overlooked as a site for heterogeneous reactions. Here we present the results of a field campaign to determine and compare the chemical composition of urban grime and of particles collected simultaneously during the autumn of 2014 at an urban site in central Leipzig, Germany. We see dramatically reduced ammonium and nitrate levels in the film as compared to particles, suggesting a significant loss of ammonium nitrate, thus enhancing the mobility of these species in the environment. Nitrate levels are 10% lower for films exposed to sunlight compared to those that were shielded from direct sun, indicating a possible mechanism for recycling nitrate anion to reactive nitrogen species. Finally, chloride levels in the film suggest that urban grime could represent an unrecognized source of continental chloride available for ClNO2 production even in times of low particulate chloride. Such source and recycling processes could prove to be important to local and regional air quality.


Subject(s)
Air Pollutants/analysis , Environmental Pollutants/chemistry , Chlorides/analysis , Cities , Environmental Monitoring/methods , Environmental Pollutants/analysis , Germany , Nitrates/chemistry , Reactive Nitrogen Species/chemistry
3.
Environ Sci Technol ; 47(2): 815-20, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23237269

ABSTRACT

The fate of NO(x) (=NO + NO(2)) is important to understand because NO(x) is a significant player in air quality determination through its role in O(3) formation. Here we show that renoxification of the urban atmosphere may occur through the photolysis of HNO(3) deposited onto urban grime. The photolysis occurs 4 orders of magnitude faster than in water with J values at noon on July 1 in Toronto of 1.2 × 10(-3) s(-1) for nitrate on urban grime and 1.0 × 10(-7) s(-1) for aqueous nitrate. Photolysis of nitrate present on urban grime probably follows the same mechanism as aqueous nitrate photolysis, involving the formation of NO(2), OH, and possibly HONO. Thus NO(x) may be rapidly returned to the atmosphere rather than being ultimately removed from the atmosphere through film wash off.


Subject(s)
Atmosphere/chemistry , Nitric Acid/chemistry , Nitrogen Oxides/chemistry , Photolysis , Soot/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...