Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Br J Nutr ; 129(1): 10-28, 2023 01 14.
Article in English | MEDLINE | ID: mdl-35236527

ABSTRACT

The present study evaluated the effects of increasing the dietary levels of EPA and DHA in Atlantic salmon (Salmo salar) reared in sea cages, in terms of growth performance, welfare, robustness and overall quality. Fish with an average starting weight of 275 g were fed one of four different diets containing 10, 13, 16 and 35 g/kg of EPA and DHA (designated as 1·0, 1·3, 1·6 and 3·5 % EPA and DHA) until they reached approximately 5 kg. The 3·5 % EPA and DHA diet showed a significantly beneficial effect on growth performance and fillet quality compared with all other diets, particularly the 1 % EPA and DHA diet. Fish fed the diet containing 3·5 % EPA and DHA showed 400-600 g higher final weights, improved internal organ health scores and external welfare indicators, better fillet quality in terms of higher visual colour score and lower occurrence of dark spots and higher EPA and DHA content in tissues at the end of the feeding trial. Moreover, fish fed the 3·5 % EPA and DHA diet showed lower mortality during a naturally occurring cardiomyopathy syndrome outbreak, although this did not reach statistical significance. Altogether, our findings emphasise the importance of dietary EPA and DHA to maintain good growth, robustness, welfare and fillet quality of Atlantic salmon reared in sea cages.


Subject(s)
Fatty Acids, Omega-3 , Salmo salar , Animals , Eicosapentaenoic Acid/pharmacology , Docosahexaenoic Acids/pharmacology , Diet/veterinary , Animal Feed/analysis
2.
Br J Nutr ; 128(12): 2291-2307, 2022 12 28.
Article in English | MEDLINE | ID: mdl-35156914

ABSTRACT

Atlantic salmon were fed diets containing graded levels of EPA + DHA (1·0, 1·3, 1·6 and 3·5 % in the diet) and one diet with 1·3 % of EPA + DHA with reduced total fat content. Fish were reared in sea cages from about 275 g until harvest size (about 5 kg) and were subjected to delousing procedure (about 2·5 kg), with sampling pre-, 1 h and 24 h post-stress. Delousing stress affected plasma cortisol and hepatic mRNA expression of genes involved in oxidative stress and immune response, but with no dietary effects. Increasing EPA + DHA levels in the diet increased the trace mineral levels in plasma and liver during mechanical delousing stress period and whole body at harvest size. The liver Se, Zn, Fe, Cu, and Mn and plasma Se levels were increased in fish fed a diet high in EPA + DHA (3·5 %) upon delousing stress. Furthermore, increased dietary EPA + DHA caused a significant increase in mRNA expression of hepcidin antimicrobial peptide (HAMP), which is concurrent with downregulated transferrin receptor (TFR) expression levels. High dietary EPA + DHA also significantly increased the whole-body Zn, Se, and Mn levels at harvest size fish. Additionally, the plasma and whole-body Zn status increased, respectively, during stress and at harvest size in fish fed reduced-fat diet with less EPA + DHA. As the dietary upper limits of Zn and Se are legally added to the feeds and play important roles in maintaining fish health, knowledge on how the dietary fatty acid composition and lipid level affect body stores of these minerals is crucial for the aquaculture industry.


Subject(s)
Salmo salar , Animals , Salmo salar/metabolism , Diet , Fatty Acids/metabolism , Minerals , RNA, Messenger
3.
J Nutr Sci ; 6: e32, 2017.
Article in English | MEDLINE | ID: mdl-29152236

ABSTRACT

The present study aimed to determine the minimum requirements of the essential n-3 fatty acids EPA and DHA in Atlantic salmon (Salmo salar) that can secure their health under challenging conditions in sea cages. Individually tagged Atlantic salmon were fed 2, 10 and 17 g/kg of EPA + DHA from 400 g until slaughter size (about 3·5 kg). The experimental fish reared in sea cages were subjected to the challenging conditions typically experienced under commercial production. Salmon receiving the lowest EPA + DHA levels showed lower growth rates in the earlier life stages, but no significant difference in final weights at slaughter. The fatty acid composition of various tissues and organs had remarkably changed. The decreased EPA + DHA in the different tissue membrane phospholipids were typically replaced by pro-inflammatory n-6 fatty acids, most markedly in the skin. The EPA + DHA levels were maintained at a higher level in the liver and erythrocytes than in the muscle, intestine and skin. After delousing at high water temperatures, the mortality rates were 63, 52 and 16 % in the salmon fed 2, 10 and 17 g/kg EPA + DHA. Low EPA + DHA levels also increased the liver, intestinal and visceral fat amount, reduced intervertebral space and caused mid-intestinal hyper-vacuolisation. Thus, 10 g/kg EPA + DHA in the Atlantic salmon diet, a level previously regarded as sufficient, was found to be too low to maintain fish health under demanding environmental conditions in sea cages.

4.
Br J Nutr ; 117(1): 30-47, 2017 01.
Article in English | MEDLINE | ID: mdl-28112067

ABSTRACT

Farmed salmon feeds have changed from purely marine-based diets with high levels of EPA and DHA in the 1990s to the current 70 % plant-based diets with low levels of these fatty acids (FA). The aim of this study was to establish the impacts of low dietary EPA and DHA levels on performance and tissue integrity of Atlantic salmon (Salmo salar). Atlantic salmon (50 g) in seawater were fed fourteen experimental diets, containing five levels (0, 0·5, 1·0, 1·5 and 2·0 %) of EPA, DHA or a 1:1 EPA+DHA plus control close to a commercial diet, to a final weight of 400 g. Lack of EPA and DHA did not influence mortality, but the n-3-deficient group exhibited moderately slower growth than those fed levels above 0·5 %. The heart and brain conserved EPA and DHA levels better than skeletal muscle, liver, skin and intestine. Decreased EPA and DHA favoured deposition of pro-inflammatory 20 : 4n-6 and 20 : 3n-6 FA in membrane phospholipids in all tissues. When DHA was excluded from diets, 18 : 3n-3 and EPA were to a large extent converted to DHA. Liver, skeletal and cardiac muscle morphology was normal in all groups, with the exception of cytoplasm packed with large or foamy vacuoles and sometimes swollen enterocytes of intestine in both deficient and EPA groups. DHA supplementation supported normal intestinal structure, and 2·0 % EPA+DHA alleviated deficiency symptoms. Thus, EPA and DHA dietary requirements cannot be based exclusively on growth; tissue integrity and fish health also need to be considered.


Subject(s)
Animal Feed/analysis , Diet/veterinary , Docosahexaenoic Acids/administration & dosage , Eicosapentaenoic Acid/administration & dosage , Muscle, Skeletal/drug effects , Salmo salar/physiology , Animal Nutritional Physiological Phenomena , Animals , Docosahexaenoic Acids/metabolism , Dose-Response Relationship, Drug , Eicosapentaenoic Acid/metabolism , Heart/anatomy & histology , Heart/drug effects , Intestines/anatomy & histology , Intestines/drug effects , Liver/anatomy & histology , Liver/drug effects , Muscle, Skeletal/anatomy & histology , Nutritional Requirements
5.
Fish Physiol Biochem ; 41(4): 1029-51, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25963942

ABSTRACT

In the present study, the distribution of sulphated glycosaminoglycans (GAGs) in the developing vertebral column of Atlantic salmon (Salmo salar) at 700, 900, 1100 and 1400 d° was examined by light microscopy. The mineralization pattern was outlined by Alizarin red S and soft structures by Alcian blue. The temporal and spatial distribution patterns of different types of GAGs: chondroitin-4-sulphate/dermatan sulphate, chondroitin-6-sulphate, chondroitin-0-sulphate and keratan sulphate were addressed by immunohistochemistry using monoclonal antibodies against the different GAGs. The specific pattern obtained with the different antibodies suggests a unique role of the different GAG types in pattern formation and mineralization. In addition, the distribution of the different GAG types in normal and malformed vertebral columns from 15 g salmon was compared. A changed expression pattern of GAGs was found in the malformed vertebrae, indicating the involvement of these molecules during the pathogenesis. The molecular size of proteoglycans (PGs) in the vertebrae carrying GAGs was analysed with western blotting, and mRNA transcription of the PGs aggrecan, decorin, biglycan, fibromodulin and lumican by real-time qPCR. Our study reveals the importance of GAGs in development of vertebral column also in Atlantic salmon and indicates that a more comprehensive approach is necessary to completely understand the processes involved.


Subject(s)
Glycosaminoglycans/metabolism , Notochord/metabolism , Proteoglycans/metabolism , Salmo salar/metabolism , Spine/metabolism , Animals , Notochord/abnormalities , Notochord/anatomy & histology , Salmo salar/abnormalities , Salmo salar/anatomy & histology , Spine/abnormalities , Spine/anatomy & histology
6.
J Aquat Anim Health ; 26(4): 219-24, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25250476

ABSTRACT

During a controlled 6-month study using six replicated water recirculation aquaculture systems (WRASs), it was observed that Rainbow Trout Oncorhynchus mykiss in all WRASs exhibited a higher-than-normal prevalence of side swimming (i.e., controlled, forward swimming but with misaligned orientation such that the fish's sagittal axis is approximately parallel to the horizontal plane). To further our understanding of this abnormality, a substudy was conducted wherein side swimmers and normally swimming fish were selectively sampled from each WRAS and growth performance (length, weight), processing attributes (fillet yield, visceral index, ventrum [i.e., thickness of the ventral "belly flap"] index), blood gas and chemistry parameters, and swim bladder morphology and positioning were compared. Side swimmers were found to be significantly smaller in length and weight and had less fillet yield but higher ventrum indices. Whole-blood analyses demonstrated that, among other things, side swimmers had significantly lower whole-blood pH and higher Pco2. Side swimmers typically exhibited swim bladder malformations, although the positive predictive value of this subjective assessment was only 73%. Overall, this study found several anatomical and physiological differences between side-swimming and normally swimming Rainbow Trout. Given the reduced weight and fillet yield of market-age side swimmers, producers would benefit from additional research to reduce side-swimming prevalence in their fish stocks.


Subject(s)
Air Sacs/abnormalities , Air Sacs/anatomy & histology , Animal Husbandry/methods , Aquaculture , Oncorhynchus mykiss/physiology , Swimming/physiology , Animals
7.
Dis Aquat Organ ; 106(1): 57-68, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-24062553

ABSTRACT

We analysed the distribution and expression of the small leucine-rich proteoglycans (SLRPs) decorin, biglycan and lumican in vertebral columns of Atlantic salmon Salmo salar L. with and without radiographically detectable deformities. Vertebral deformities are a reoccurring problem in salmon and other intensively farmed species, and an understanding of the components involved in the pathologic development of the vertebrae is important in order to find adequate solutions to this problem. Using immunohistology and light microscopy, we found that in non-deformed vertebrae biglycan, lumican and decorin were all expressed in osteoblasts at the vertebral growth zones and at the ossification front of the chondrocytic arches. Hence, the SLRPs are expressed in regions where intramembranous and endochondral ossification take place. In addition, mRNA expression of biglycan, decorin and lumican was demonstrated in a primary osteoblast culture established from Atlantic salmon, supporting the in vivo findings. Transcription of the SLRPs increased during differentiation of the osteoblasts in vitro and where lumican mRNA expression increased later in the differentiation compared with decorin and biglycan. Intriguingly, in vertebral fusions, biglycan, decorin and lumican protein expression was extended to trans-differentiating cells at the border between arch centra and osteoblast growth zones. In addition, mRNA expression of biglycan, decorin and lumican differed between non-deformed and fused vertebrae, as shown by quantitative PCR (qPCR). Western blotting revealed an additional band of biglycan in fused vertebrae which had a higher molecular weight than in non-deformed vertebrae. Fourier-transform infrared (FTIR) spectroscopy revealed more spectral focality in the endplates of vertebral fusions and significantly more non-reducible collagen crosslinks compared with non-deformed vertebrae, thus identifying differences in bone structure.


Subject(s)
Gene Expression Regulation/physiology , Proteoglycans/metabolism , RNA, Messenger/metabolism , Salmo salar/anatomy & histology , Salmo salar/metabolism , Spine/anatomy & histology , Animals , Proteoglycans/chemistry , Proteoglycans/genetics , RNA, Messenger/genetics , Time
8.
Aquat Toxicol ; 124-125: 48-57, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22898234

ABSTRACT

The objective of this study was to determine the underlying physiological and molecular responses to long-term sublethal ammonia exposure in Atlantic salmon (Salmo salar) parr. Previous studies have predominately focused on mechanisms during acute, short-term exposure. For that purpose Atlantic salmon parr were exposed to four ammonia concentrations between 4 and 1800 µmol l(-1) total ammonia nitrogen (TAN), and subjected to two feeding regimes for 15 weeks. Elevated environmental ammonia and full feeding strength caused an initial increase in plasma ammonia levels ([T(amm)]) after 22 days of exposure, which thereafter declined and remained similar to the control animals towards the end of the study. On the other hand, a progressive decrease in plasma urea levels was evident throughout the entire exposure period and depended on the concentration of environmental ammonia, with the largest decrease in urea levels observed at the highest ammonia concentrations (1700 and 1800 µmol l(-1) TAN). We hypothesized that the successful adaptation to long-term elevated ammonia levels would involve an increased capacity for carrier-facilitated branchial excretion. This hypothesis was strengthened by the first evidence of an up-regulation of branchial transcription of the genes encoding the Rhesus (Rh) glycoproteins, Rhcg1 and Rhcg2, urea transporter (UT) and aquaporin 3a (Aqp3a), during long-term exposure. Of the Rhesus glycoprotein (Rh) mRNAs, Rhcg1 was up-regulated at all tested ammonia levels, while Rhcg2 showed a concentration-sensitive increase. Increased transcription levels of V-type H(+)-ATPase (H(+)-ATPase) were observed at the highest ammonia concentrations (1700 and 1800 µmol l(-1) TAN) and coincided with an up-regulation of Rhcg2 at these concentrations. Transcription of UT and Aqp3a was increased after 15 weeks of exposure to low ammonia levels (470 and 480 µmol l(-1) TAN). A significant increase in brain glutamine (Gln) concentration was observed for full fed Atlantic salmon after 22 days and in fish with restricted feeding after 105 days of exposure to 1800 and 1700 µmol l(-1) TAN, respectively, without any concomitant decrease in brain glutamate (Glu) concentrations. These results suggest that Gln synthesis is an ammonia detoxifying strategy employed in the brain of Atlantic salmon parr during long-term sublethal ammonia exposure. Full feed strength had an additive effect on plasma [T(amm)], while the restricted feeding regime postponed the majority of the observed physiological and molecular responses. In conclusion, Atlantic salmon parr adapts to the long-term sublethal ammonia concentrations with increased branchial transcription levels of ammonia and urea transporting proteins and ammonia detoxification in the brain.


Subject(s)
Ammonia/toxicity , Brain/drug effects , Environmental Exposure , Gene Expression Regulation/drug effects , Salmo salar/physiology , Water Pollutants, Chemical/toxicity , Amino Acids/analysis , Ammonia/blood , Animals , Brain/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Salmo salar/genetics , Time Factors , Urea/blood , Water Pollutants, Chemical/blood
9.
Fish Physiol Biochem ; 37(4): 821-31, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21452016

ABSTRACT

We have previously characterized the development of vertebral fusions induced by elevated water temperature in Atlantic salmon. Molecular markers of bone and cartilage development together with histology were used to understand the complex pathology and mechanism in the development of this spinal malformation. In this study, we wanted to use proteomics, a non-hypothetical approach to screen for possible new markers involved in the fusion process. Proteins extracted from non-deformed and fused vertebrae of Atlantic salmon were therefore compared by two-dimensional electrophoresis (2DE) and MALDI-TOF analysis. Data analysis of protein spots in the 2DE gels demonstrated matrilin-1, also named cartilage matrix protein, to be the most highly up-regulated protein in fused compared with non-deformed vertebrae. Furthermore, real-time PCR analysis showed strong up-regulation of matrilin-1 mRNA in fused vertebrae. Immunohistochemistry demonstrated induced matrilin-1 expression in trans-differentiating cells undergoing a metaplastic shift toward chondrocytes in fusing vertebrae, whereas abundant expression was demonstrated in cartilaginous tissue and chordocytes of both non-deformed and fused vertebrae. These results identifies matrilin-1 as a new interesting candidate in the fusion process, and ratify the use of proteomic as a valuable technique to screen for markers involved in vertebral pathogenesis.


Subject(s)
Extracellular Matrix Proteins/metabolism , Glycoproteins/metabolism , Joint Deformities, Acquired/metabolism , Salmo salar/metabolism , Spine/metabolism , Animals , Biomarkers/metabolism , Cell Transdifferentiation , Electrophoresis, Gel, Two-Dimensional , Fish Proteins/metabolism , Matrilin Proteins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spine/pathology
10.
Cell Tissue Res ; 342(3): 363-76, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21086140

ABSTRACT

Histological characterization of spinal fusions in Atlantic salmon (Salmo salar) has demonstrated shape alterations of vertebral body endplates, a reduced intervertebral space, and replacement of intervertebral cells by ectopic bone. However, the significance of the notochord during the fusion process has not been addressed. We have therefore investigated structural and cellular events in the notochord during the development of vertebral fusions. In order to induce vertebral fusions, Atlantic salmon were exposed to elevated temperatures from fertilization until they attained a size of 15g. Based on results from radiography, intermediate and terminal stages of the fusion process were investigated by immunohistochemistry and real-time quantitative polymerase chain reaction. Examination of structural extracellular matrix proteins such as Perlecan, Aggrecan, Elastin, and Laminin revealed reduced activity and reorganization at early stages in the pathology. Staining for elastic fibers visualized a thinner elastic membrane surrounding the notochord of developing fusions, and immunohistochemistry for Perlecan showed that the notochordal sheath was stretched during fusion. These findings in the outer notochord correlated with the loss of Aggrecan- and Substance-P-positive signals and the further loss of vacuoles from the chordocytes in the central notochord. At more progressed stages of fusion, chordocytes condensed, and the expression of Aggrecan and Substance P reappeared. The hyperdense regions seem to be of importance for the formation of notochordal tissue into bone. Thus, the remodeling of notochord integrity by reduced elasticity, structural alterations, and cellular changes is probably involved in the development of vertebral fusions.


Subject(s)
Bone Remodeling/physiology , Notochord/anatomy & histology , Notochord/metabolism , Salmo salar/growth & development , Spine/growth & development , Spine/metabolism , Aggrecans/biosynthesis , Aggrecans/genetics , Animals , Elastic Tissue/anatomy & histology , Extracellular Matrix Proteins/metabolism , Fluorescent Antibody Technique , Polymerase Chain Reaction , Salmo salar/anatomy & histology , Substance P/biosynthesis , Substance P/genetics
11.
BMC Physiol ; 10: 12, 2010 Jul 06.
Article in English | MEDLINE | ID: mdl-20604915

ABSTRACT

BACKGROUND: Hyperthermia has been shown in a number of organisms to induce developmental defects as a result of changes in cell proliferation, differentiation and gene expression. In spite of this, salmon aquaculture commonly uses high water temperature to speed up developmental rate in intensive production systems, resulting in an increased frequency of skeletal deformities. In order to study the molecular pathology of vertebral deformities, Atlantic salmon was subjected to hyperthermic conditions from fertilization until after the juvenile stage. RESULTS: Fish exposed to the high temperature regime showed a markedly higher growth rate and a significant higher percentage of deformities in the spinal column than fish reared at low temperatures. By analyzing phenotypically normal spinal columns from the two temperature regimes, we found that the increased risk of developing vertebral deformities was linked to an altered gene transcription. In particular, down-regulation of extracellular matrix (ECM) genes such as col1a1, osteocalcin, osteonectin and decorin, indicated that maturation and mineralization of osteoblasts were restrained. Moreover, histological staining and in situ hybridization visualized areas with distorted chondrocytes and an increased population of hypertrophic cells. These findings were further confirmed by an up-regulation of mef2c and col10a, genes involved in chondrocyte hypertrophy. CONCLUSION: The presented data strongly indicates that temperature induced fast growth is severely affecting gene transcription in osteoblasts and chondrocytes; hence change in the vertebral tissue structure and composition. A disrupted bone and cartilage production was detected, which most likely is involved in the higher rate of deformities developed in the high intensive group. Our results are of basic interest for bone metabolism and contribute to the understanding of the mechanisms involved in development of temperature induced vertebral pathology. The findings may further conduce to future molecular tools for assessing fish welfare in practical farming.


Subject(s)
Extracellular Matrix/genetics , Hot Temperature , Salmo salar/abnormalities , Salmo salar/genetics , Spine/abnormalities , Animals , Bone and Bones/metabolism , Cartilage/metabolism , Down-Regulation , Extracellular Matrix/metabolism , Gene Expression , Immunohistochemistry , In Situ Hybridization , Osteoblasts/metabolism , Osteocalcin/genetics , Osteocalcin/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Radiography , Salmo salar/metabolism , Spine/diagnostic imaging , Spine/metabolism , Up-Regulation
12.
BMC Physiol ; 10: 13, 2010 Jul 06.
Article in English | MEDLINE | ID: mdl-20604916

ABSTRACT

BACKGROUND: Spinal disorders are a major cause of disability for humans and an important health problem for intensively farmed animals. Experiments have shown that vertebral deformities present a complex but comparable etiology across species. However, the underlying molecular mechanisms involved in bone deformities are still far from understood. To further explicate the mechanisms involved, we have examined the fundamental aspects of bone metabolism and pathogenesis of vertebral fusions in Atlantic salmon (Salmo salar). RESULTS: Experimentally, juvenile salmon were subjected to hyperthermic conditions where more than 28% developed fused vertebral bodies. To characterize the fusion process we analyzed an intermediate and a terminal stage of the pathology by using x-ray, histology, immunohistochemistry, real-time quantitative PCR and in situ hybridization. At early stage in the fusion process, disorganized and proliferating osteoblasts were prominent at the growth zones of the vertebral body endplates. PCNA positive cells further extended along the rims of fusing vertebral bodies. During the developing pathology, the marked border between the osteoblast growth zones and the chondrocytic areas connected to the arches became less distinct, as proliferating cells and chondrocytes blended through an intermediate zone. This cell proliferation appeared to be closely linked to fusion of opposing arch centra. During the fusion process a metaplastic shift appeared in the arch centra where cells in the intermediate zone between osteoblasts and chondrocytes co-expressed mixed signals of chondrogenic and osteogenic markers. A similar shift also occurred in the notochord where proliferating chordoblasts changed transcription profile from chondrogenic to also include osteogenic marker genes. In progressed fusions, arch centra and intervertebral space mineralized. CONCLUSION: Loss of cell integrity through cell proliferation and metaplastic shifts seem to be key events in the fusion process. The fusion process involves molecular regulation and cellular changes similar to those found in mammalian deformities, indicating that salmon is suitable for studying general bone development and to be a comparative model for spinal deformities.


Subject(s)
Bone and Bones/metabolism , Salmo salar/abnormalities , Salmo salar/metabolism , Spine/abnormalities , Spine/metabolism , Animals , Cell Differentiation , Cell Proliferation , Chondrocytes/metabolism , Hot Temperature , Immunohistochemistry , In Situ Hybridization , Osteoblasts/metabolism , Reverse Transcriptase Polymerase Chain Reaction
13.
Gen Comp Endocrinol ; 147(2): 118-25, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16466726

ABSTRACT

Heart abnormalities are increasingly recognized as a problem in salmon aquaculture. Fish in early life-stages are particularly susceptible to teratogens, including elevated water temperature. Recently, heat-induced mRNA expression of the cardiac hormone atrial natriuretic peptide (ANP), which is known to be involved in modulation of cardiac growth and regulation of cardiac homeostasis, was demonstrated in Atlantic salmon (Salmo salar) embryos by RAP-PCR. The relation between heat sensitive ANP expression and heart abnormalities was explored in two experiments. In an experiment with short-term exposure, salmon eggs were heat shocked at 16 degrees C at eight different embryonic stages from gastrulation till completion of somitogenesis. The RT-PCR results showed that the ANP mRNA expression was down-regulated at the onset of heart formation at the gastrula stage, while the transcription became heat inducible from the fusioning of the heart tube around the 15th-20th somite stage and onwards. This was confirmed by whole-mount in situ hybridization, which also showed that ANP is exclusively expressed in the heart of Atlantic salmon embryos. In a second long-term experiment, salmon embryos were incubated at either 10 degrees C (high temperature) or 8 degrees C (controls) from fertilization till first feeding, and subsequently reared within normal conditions to an average size of 52 g. The long-term hyperthermic embryos showed up-regulated ANP transcription at the approximately 9th and approximately 20th somite stage and at the completion of somitogenesis. The cardiosomatic index [CSI; (ventricle weight/body weight) *100] demonstrated a significant decrease in the relative heart weight of fish incubated at 10 degrees C during the embryogenesis compared with controls. In these fish, aplasia of septum transversum was observed in 2 of 25 fish, resulting in abnormally shaped hearts situated partly within the abdominal cavity. Altogether, our results demonstrate that hyperthermia both induce deviant development of heart and associated structures and up-regulation of ANP transcription during embryogenesis. A possible role of ANP in development of heart malformations is thus suggested.


Subject(s)
Atrial Natriuretic Factor/metabolism , Heart Defects, Congenital/etiology , Heart/embryology , Hot Temperature/adverse effects , Salmo salar/genetics , Up-Regulation , Animals , Embryo, Nonmammalian/metabolism , Female , Hyperthermia, Induced , In Situ Hybridization , Male , Reverse Transcriptase Polymerase Chain Reaction , Salmo salar/embryology , Tissue Distribution , Zygote/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...