Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 46(17): 4248-4251, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34469986

ABSTRACT

Plasmonic photothermal therapy (PPTT), as an increasingly studied treatment alternative, has been widely regarded mostly as a surface tissue treatment choice. Although some techniques have been implemented for interstitial tumors, these involve some grade of invasiveness, as the outer skin is usually broken to introduce light-delivering optical fibers or even catheters. In this work, we present a potential non-invasive strategy using the stereotactic approach, long employed in radiosurgery, by converging multiple near infrared laser beams for PPTT in tissue-equivalent optical phantoms that enclose small gel spheres and simulate interstitial tissue impregnated with plasmonic nanoparticles. The real-time in-depth monitoring of temperature increase is realized by an infrared camera face-on mounted over the phantom. Our results show that a significant reduction in the surface heating can be achieved with this configuration while remarkably increasing the interstitial reach of PPTT, assuring a ∼6∘C temperature increase for the simulated tumors at 10 mm depth and ∼4∘C at 15 mm depth and opening up new possibilities for future clinical applications.


Subject(s)
Nanoparticles , Neoplasms , Gold , Humans , Lasers , Phantoms, Imaging
2.
Appl Opt ; 59(33): 10591-10598, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33361994

ABSTRACT

We present a new method to calculate the complex refractive index of spherical scatterers in a novel optical phantom developed by using homemade monodisperse silica nanospheres embedded into a polyester resin matrix and an ethanol-water mixture for applications in diffuse imaging. The spherical geometry of these nanoparticles makes them suitable for direct comparison between the values of the absorption and reduced scattering coefficients (µa and µs', respectively) obtained by the diffusion approximation solution to the transport equation from scattering measurements and those obtained by the Mie solution to Maxwell's equations. The values of the optical properties can be obtained by measuring, using an ultrafast detector, the time-resolved intensity distribution profiles of diffuse light transmitted through a thick slab of the silica nanosphere phantom, and by fitting them to the time-dependent diffusion approximation solution to the transport equation. These values can also be obtained by Mie solutions for spherical particles when their physical properties and size are known. By using scanning electron microscopy, we measured the size of these nanospheres, and the numerical results of µa and µs' can then be inferred by calculating the absorption and scattering efficiencies. Then we propose a numerical interval for the imaginary part of the complex refractive index of SiO2 nanospheres, ns, which is estimated by fixing the fitted values of µa and µs', using the known value of the real part of ns, and finding the corresponding value of Im(ns) that matches the optical parameters obtained by both methods finding values close to those reported for silica glass. This opens the possibility of producing optical phantoms with scattering and absorption properties that can be predicted and designed from precise knowledge of the physical characteristics of their constituents from a microscopic point of view.

SELECTION OF CITATIONS
SEARCH DETAIL
...