Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 13(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37048416

ABSTRACT

The evolution of parameters known to be relevant indicators of energy status, oxidative stress, and antioxidant defense in chickens was followed. These parameters were measured weekly from 1 to 42 days in plasma and/or muscles and liver of two strains differing in growth rate. At 1-day old, in plasma, slow-growing (SG) chicks were characterized by a high total antioxidant status (TAS), probably related to higher superoxide dismutase (SOD) activity and uric acid levels compared to fast-growing (FG) chicks whereas the lipid peroxidation levels were higher in the liver and muscles of SG day-old chicks. Irrespective of the genotype, the plasma glutathione reductase (GR) and peroxidase (GPx) activities and levels of hydroperoxides and α- and γ-tocopherols decreased rapidly post-hatch. In the muscles, lipid peroxidation also decreased rapidly after hatching as well as catalase, GR, and GPx activities, while the SOD activity increased. In the liver, the TAS was relatively stable the first week after hatching while the value of thio-barbituric acid reactive substances (TBARS) and GR activity increased and GPx and catalase activities decreased. Our study revealed the strain specificities regarding the antioxidant systems used to maintain their redox balance over the life course. Nevertheless, the age had a much higher impact than strain on the antioxidant ability of the chickens.

2.
Data Brief ; 39: 107516, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34765707

ABSTRACT

Duck species are known to have different ability to fatty liver production in response to overfeeding and gene expression analyses can help to characterize mechanisms involved in these differences. This data article reports the sequencing of RNAs extracted from the liver of Pekin and Muscovy duck species and of their reciprocal hybrids, Mule and Hinny ducks fed ad libitum or overfed. Libraries were prepared by selecting polyadenylated mRNAs and RNA Sequencing (RNASeq) was performed using Illumina HiSeq2000 platform. RNASeq data presented in this article were deposited in the NCBI sequence read archive (SRA) under the accession number SRP144764 and links to these data were also indicated in the Data INRAE repository (https://doi.org/10.15454/JJZ3QQ). Transcriptome analyses of these data were published in Hérault et al. (2019) and Liu et al. (2020).

3.
Food Chem ; 351: 129289, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-33621922

ABSTRACT

Reliable human health risk assessment associated with chlorinated paraffins (CPs) exposure is limited by the lack of data on the fate of this complex family of contaminants. To gain knowledge on the accumulation and distribution of CPs in biota after ingestion, laying hens were dietary exposed to technical mixtures of short- (SCCPs), medium- (MCCPs), or long-chain (LCCPs) CPs of various chlorine contents during 91 days, at 200 ng/g of feed, each. Adipose tissue, liver, muscle and serum were collected at the steady-state, along with excreta. All C10-C36 CPs were detected in liver. However, differences were observed in CP distribution: LCCPs high %Cl were retained in the liver; LCCPs low %Cl circulated through the serum and were distributed in the different compartments, but were mostly excreted through the eggs; SCCPs and MCCPs were found in all tissues at similar levels. Finally, a mass balance indicated a potential for biotransformation.


Subject(s)
Chromatography, High Pressure Liquid , Dietary Exposure , Hydrocarbons, Chlorinated/chemistry , Mass Spectrometry , Paraffin/analysis , Adipose Tissue/chemistry , Adipose Tissue/metabolism , Animals , Chickens , Chromatography, Reverse-Phase , Eggs/analysis , Female , Humans , Least-Squares Analysis , Limit of Detection , Liver/chemistry , Liver/metabolism , Muscles/chemistry , Muscles/metabolism , Risk Assessment
4.
Food Chem ; 343: 128491, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33183877

ABSTRACT

Chlorinated paraffins (CPs) are a complex family of contaminants. Lack of exposure data and an understanding of the fate of these chemicals in the environment affect our ability to reliably assess the human health risk associated with CP exposure. The present study focused on the evaluation of CP transfer from feed to eggs of laying hens exposed over 91 days. Laying hens were provided feed spiked with five technical mixtures of short-, medium- or long-chain CPs and featuring low or high chlorine contents, at concentrations of 200 ng/g each. Eggs were collected daily. All mixtures except the LCCPs with high chlorine content transferred into the eggs, with accumulation ratios increasing with the chain length and chlorine content. Concentrations at the steady-state varied between 41 and 1397 ng/g lw depending on the mixture. Additionally, the homologue-dependant transfer resulted in a change of pattern compared to that from the spiked feed.


Subject(s)
Chickens , Dietary Exposure/adverse effects , Eggs/analysis , Halogenation , Oviposition , Paraffin/chemistry , Animals , Female , Humans
5.
BMC Genomics ; 20(1): 13, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30616512

ABSTRACT

BACKGROUND: Duck species are known to have different susceptibility to fatty liver production in response to overfeeding. In order to better describe mechanisms involved in the development of hepatic steatosis and differences between species, transcriptome analyses were conducted on RNAs extracted from the livers of Pekin and Muscovy duck species and of their reciprocal hybrids, Mule and Hinny ducks fed ad libitum or overfed to identify differentially expressed genes and associated functions. RESULTS: After extraction from the liver of ducks from the four genetic types, RNAs were sequenced and sequencing data were analyzed. Hierarchic clustering and principal component analyses of genes expression levels indicated that differences between individuals lie primarily in feeding effect, differences between genetic types being less important. However, Muscovy ducks fed ad libitum and overfed were clustered together. Interestingly, Hinny and Mule hybrid ducks could not be differentiated from each other, according to feeding. Many genes with expression differences between overfed and ad libitum fed ducks were identified in each genetic type. Functional annotation analyses of these differentially expressed genes highlighted some expected functions (carbohydrate and lipid metabolisms) but also some unexpected ones (cell proliferation and immunity). CONCLUSIONS: These analyses evidence differences in response to overfeeding between different genetic types and help to better characterize functions involved in hepatic steatosis in ducks.


Subject(s)
Ducks/genetics , Fatty Liver/genetics , Poultry Diseases/genetics , Sequence Analysis, RNA/methods , Animal Feed , Animals , Ducks/metabolism , Fatty Liver/pathology , Gene Expression Regulation/genetics , Lipid Metabolism/genetics , Liver/metabolism
6.
Foods ; 8(1)2018 Dec 24.
Article in English | MEDLINE | ID: mdl-30586883

ABSTRACT

The technological, nutritional, and sensorial quality of breasts and thighs with drumsticks of turkey male and female breeders was characterized by comparison with breasts and thighs with drumsticks of growing male and female turkeys from the Grademaker line (hybrid turkeys, n = 20 birds per sex and per physiological stage). The breeder turkeys were slaughtered at 397 and 410 days of age and 10.42 and 32.67 kg of body weight for the females and males, respectively. The standard turkeys were slaughtered at 75 and 103 days of age and 5.89 and 13.48 kg of body weight for the females and males, respectively. The differences observed between males and females on one hand and between standard and breeder turkeys on the other hand were mainly induced by differences in slaughter ages and sexual dimorphism on body weight. The meat of female breeders had characteristics close to those of female and male standard turkeys, whereas the meat of male breeders was clearly distinguishable, particularly by displaying lower tenderness and water holding capacity.

7.
Talanta ; 178: 854-863, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29136906

ABSTRACT

The aim of this work is to compare a novel exploratory chemometrics method, Common Components Analysis (CCA), with Principal Components Analysis (PCA) and Independent Components Analysis (ICA). CCA consists in adapting the multi-block statistical method known as Common Components and Specific Weights Analysis (CCSWA or ComDim) by applying it to a single data matrix, with one variable per block. As an application, the three methods were applied to SPME-GC-MS volatolomic signatures of livers in an attempt to reveal volatile organic compounds (VOCs) markers of chicken exposure to different types of micropollutants. An application of CCA to the initial SPME-GC-MS data revealed a drift in the sample Scores along CC2, as a function of injection order, probably resulting from time-related evolution in the instrument. This drift was eliminated by orthogonalization of the data set with respect to CC2, and the resulting data are used as the orthogonalized data input into each of the three methods. Since the first step in CCA is to norm-scale all the variables, preliminary data scaling has no effect on the results, so that CCA was applied only to orthogonalized SPME-GC-MS data, while, PCA and ICA were applied to the "orthogonalized", "orthogonalized and Pareto-scaled", and "orthogonalized and autoscaled" data. The comparison showed that PCA results were highly dependent on the scaling of variables, contrary to ICA where the data scaling did not have a strong influence. Nevertheless, for both PCA and ICA the clearest separations of exposed groups were obtained after autoscaling of variables. The main part of this work was to compare the CCA results using the orthogonalized data with those obtained with PCA and ICA applied to orthogonalized and autoscaled variables. The clearest separations of exposed chicken groups were obtained by CCA. CCA Loadings also clearly identified the variables contributing most to the Common Components giving separations. The PCA Loadings did not highlight the most influencing variables for each separation, whereas the ICA Loadings highlighted the same variables as did CCA. This study shows the potential of CCA for the extraction of pertinent information from a data matrix, using a procedure based on an original optimisation criterion, to produce results that are complementary, and in some cases may be superior, to those of PCA and ICA.

8.
J Chromatogr A ; 1497: 9-18, 2017 May 12.
Article in English | MEDLINE | ID: mdl-28366563

ABSTRACT

Starting from a critical analysis of a first "proof of concept" study on the utility of the liver volatolome for detecting livestock exposure to environmental micropollutants (Berge et al., 2011), the primary aim of this paper is to improve extraction conditions so as to obtain more representative extracts by using an extraction temperature closer to livestock physiological conditions while minimizing analytical variability and maximizing Volatile Organic Compound (VOC) abundancies. Levers related to extraction conditions and sample preparation were assessed in the light of both abundance and coefficient of variation of 22 candidate VOC markers identified in earlier volatolomic studies. Starting with a CAR/PDMS fiber and a 30min extraction, the reduction of SPME temperature to 40°C resulted in a significant decrease in the area of 14 candidate VOC markers (p<0.05), mainly carbonyls and alcohols but also a reduction in the coefficient of variation for 17 of them. In order to restore VOC abundances and to minimize variability, two approaches dealing with sample preparation were investigated. By increasing sample defrosting time at 4°C from 0 to 24h yielded higher abundances and lower variabilities for 15 and 13 compounds, respectively. Lastly, by using additives favouring the release of VOCs (1.2g of NaCl) the sensitivity of the analysis was improved with a significant increase in VOC abundances of more than 50% for 13 out of the 22 candidate markers. The modified SPME parameters significantly enhanced the abundances while decreasing the analytical variability for most candidate VOC markers. The second step was to validate the ability of the revised SPME protocol to discriminate intentionally contaminated broiler chickens from controls, under case/control animal testing conditions. After verification of the contamination levels of the animals by national reference laboratories, data analysis by a multivariate chemometric method (Common Components and Specific Weights Analysis - ComDim) showed that the liver volatolome could reveal dietary exposure of broilers to a group of environmental pollutants (PCBs), a veterinary treatment (monensin), and a pesticide (deltamethrin), thus confirming the usefulness of this analytical set-up.


Subject(s)
Environmental Pollutants/analysis , Liver/chemistry , Livestock/metabolism , Solid Phase Microextraction/methods , Volatile Organic Compounds/analysis , Alcohols/analysis , Animals , Chickens/metabolism , Monensin/analysis , Nitriles/analysis , Pesticides/analysis , Pyrethrins/analysis , Temperature
9.
Chemosphere ; 180: 365-372, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28415037

ABSTRACT

A LC-ESI(-)-HRMS method dedicated to the analysis of 6 HBCDD enantiomers at trace levels in animal matrices was developed, using a cellulose based stationary phase with a particle size of 2.5 µm. This method was applied to a sample set derived from a kinetic study of α-HBCDD previously conducted in fast- and slow-growing chickens (Gallus gallus domesticus, n = 49, plus controls), in order to study the enantiomer specific accumulation and depuration of α-HBCDD in various tissues. Regarding abdominal adipose tissue, muscle and liver, the average enantiomeric fractions of α-HBCDD (EFα) for continuously exposed groups ranged between 0.434 and 0.467, with standard deviations below 0.014, showing a significant enrichment in (-)α enantiomer even accentuated for slow growing individuals during depuration with EFα reduced by about 0.020. Similar trends were observed for pooled plasma. Then, EFα of circulating plasma α-HBCDD appeared to closely reflect EFα in storage tissues and liver, suggesting some equilibrium. The racemic elimination of α enantiomer in excreta during the contamination phase indicated that no preferential gastrointestinal absorption took place. By contrast, preferential excretion of (-)α-HBCDD from the circulating compartment to the intestinal lumen occurred during the depuration. Finally, the method was applied to samples collected in three chicken farms, selected for total HBCDD levels in muscle in the ng/g range, as a tool to determine whether the contamination occurred ante- or post-mortem, according to the chiral signature. Ante-mortem contamination was hypothesised for 2 farms, with feed being excluded as contamination source.


Subject(s)
Chickens/metabolism , Environmental Monitoring/methods , Environmental Pollutants/metabolism , Hydrocarbons, Brominated/metabolism , Animals , Liver , Muscles , Stereoisomerism
10.
Dev Psychobiol ; 59(3): 400-409, 2017 04.
Article in English | MEDLINE | ID: mdl-28261786

ABSTRACT

We assessed whether the ratio of dietary n-6/n-3 polyunsaturated fatty acids (PUFA) during egg formation engenders transgenerational maternal effects in domestic chicks. We analyzed yolk lipid and hormone concentrations, and HPA-axis activity in hens fed a control diet (high n-6/n-3 ratio) or a diet enriched in n-3 PUFAs (low n-6/n-3 ratio) for 6 consecutive weeks. Their chicks were tested for neophobia during the first week of life. We found higher corticosterone metabolites in droppings of hens fed the diet enriched in n-3 and significantly higher concentrations of yolk progesterone, androstenedione, and estradiol in their eggs compared to controls. Chicks of hens fed the n-3 enriched diet showed a lower body mass at hatch than controls and expressed higher neophobia when exposed to a novel object. These results add support to the hypothesis that the nutritional state of female birds produces variation in yolk hormone levels and engender maternal effects.


Subject(s)
Androstenedione/metabolism , Animal Nutritional Physiological Phenomena/physiology , Behavior, Animal/physiology , Egg Yolk/metabolism , Estradiol/metabolism , Fatty Acids, Omega-3 , Fatty Acids, Omega-6 , Progesterone/metabolism , Animals , Chickens , Female
11.
Chemosphere ; 178: 424-431, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28342374

ABSTRACT

The aim of the current study was to describe the fate of ingested α-hexabromocyclododecane (α-HBCDD) in fast-growing (FG) and slow-growing (SG) broilers, through an exposure to a dietary concentration of 50 ng α-HBCDD g-1 feed during 42 and 84 days, respectively. Depuration parameters were assessed in SG broilers successively exposed during 42 days and depurated during 42 days. At market age, SG broilers had ingested 42% more feed than FG broilers, while their body weight gain per g of feed ingested was 34% lower. No isomerization of α- to ß- or γ-HBCDD forms occurred, while OH-HBCDD was identified as a product of α-HBCDD metabolism. Irrespective of the strain, abdominal fat displayed the highest α-HBCDD concentration on a lipid weight basis, followed leg muscles and then breast muscle, liver and plasma. The accumulation ratios of α-HBCDD were slightly higher in SG (6.7, 2.1, 2.6 and 9.9 in leg muscles, breast muscle, liver and abdominal fat, respectively) than in FG broilers (5.2, 2.2, 1.1 and 8.4, respectively). The elimination half-lives in SG broilers were 20, 12 and 19 d in leg muscles, breast muscle and abdominal fat, respectively, to which dilution through growth contributed for around 50%. The overall assimilation efficiency of α-HBCDD was estimated at 58 and 50% in FG and SG broilers, respectively, while 22 and 17% of α-HBCDD ingested were estimated to be eliminated in excreta as metabolites.


Subject(s)
Chickens/growth & development , Chickens/metabolism , Flame Retardants/metabolism , Hydrocarbons, Brominated/metabolism , Animals , Body Weight , Diet , Male , Tissue Distribution
12.
Article in English | MEDLINE | ID: mdl-27442111

ABSTRACT

Global transcriptome analysis of chicken whole blood to discover biomarkers of different phenotypes or physiological disorders has never been investigated so far. Whole blood provides significant advantages, allowing large scale and non-invasive sampling. However, generation of gene expression data from the blood of non-mammalian species remains a challenge, notably due to the nucleated red blood cells, hindering the use of well-established protocols. The aim of this study was to analyze the relevance of using whole blood cells (WB) to find biomarkers, instead of Peripheral Blood Mononuclear Cells (PBMC), usually chosen for immune challenges. RNA sources from WB and PBMC was characterized by microarray analysis. Our results show that the quality and quantity of RNA obtained from WB was suitable for further analyses, although the quality was lower than that from PBMC. The transcriptome profiling comparison revealed that the majority of genes were expressed in both WB and PBMC. Hemoglobin subunits were the major transcripts in WB, whereas the most enriched biological process was related to protein catabolic process. Most of the over-represented transcripts in PBMC were implicated in functions specific to thrombocytes, like coagulation and platelet activation, probably due to the large proportion of this nucleated cell type in chicken PBMC. Functions related to B and T cells and to other immune functions were also enriched in the PBMC subset. We conclude that WB is more suitable for large scale immunity oriented studies and other biological processes that have been poorly investigated so far.


Subject(s)
Biomarkers/blood , Blood Proteins/genetics , Chickens/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing/methods , Leukocytes, Mononuclear/metabolism , Transcriptome/genetics , Animals , Cells, Cultured , Chickens/growth & development , Computational Biology , Genome/genetics , Male , Molecular Sequence Annotation , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
13.
Eur J Nutr ; 55(3): 1189-99, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25997692

ABSTRACT

PURPOSE: A better understanding of the control of body fat mass and distribution is required for both human health and animal production. The current study investigates plasma parameters in response to changes in body fat mass. METHODS: Pigs from two lines divergently selected for residual feed intake were fed diets contrasted in energy sources and nutrients. Between 74 and 132 days of age, pigs (n = 12 by diet and by line) received isoproteic and isoenergetic diets, either rich in starch (LF) or in lipids and fibres (HF). At the end of the feeding trial, plasma samples were analysed by (1)H NMR spectroscopy and standard hormonal and biochemical assays. RESULTS: Pigs fed the HF diet had lower (P < 0.01) perirenal and subcutaneous adipose tissue relative masses than pigs fed the LF diet. Metabolomic approach showed a clear discrimination between diets, with lower (P < 0.05) plasma levels of creatinine-lysine, creatine, tyrosine, proline, histidine, lysine, phenylalanine and formate but higher (P < 0.001) plasma VLDL-LDL levels in HF pigs than in LF pigs. Plasma concentrations of triglycerides were higher (P < 0.001), while plasma concentrations of ß-hydroxybutyrate, leptin, glucose, insulin and urea were lower (P ≤ 0.05) in HF pigs than in LF pigs. Plasma levels of leptin, creatine and urea were positively correlated (r = 0.3, P < 0.05) with relative adipose tissue masses. CONCLUSION: These data indicate that metabolites associated with energy and protein metabolism were involved in the response to a high-fat, high-fibre diet. Relevant plasma indicators of metabolic flexibility related to changes in body adiposity were then proposed.


Subject(s)
Adiposity , Biomarkers/blood , Diet/veterinary , Metabolomics , 3-Hydroxybutyric Acid/blood , Adipose Tissue/metabolism , Animal Feed , Animals , Blood Glucose/metabolism , Body Weight , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Creatine/blood , Creatinine/blood , Dietary Fats/administration & dosage , Dietary Fiber/administration & dosage , Histidine/blood , Insulin/blood , Leptin/blood , Linear Models , Lipid Metabolism , Lysine/blood , Magnetic Resonance Spectroscopy , Male , Phenylalanine/blood , Proline/blood , Swine , Triglycerides/blood , Tyrosine/blood
14.
Mol Biol Evol ; 31(10): 2637-46, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25015647

ABSTRACT

Gene loss is one of the main drivers in the evolution of genomes and species. The demonstration that a gene has been lost by pseudogenization is truly complete when one finds the pseudogene in the orthologous genomic region with respect to active genes in other species. In some cases, the identification of such orthologous loci is not possible because of chromosomal rearrangements or if the gene of interest has not yet been sequenced. This question is particularly important in the case of birds because the genomes of avian species possess only about 15,000 predicted genes, in comparison with 20,000 in mammals. Yet, gene loss raises the question of which functions are affected by the changes in gene counts. We describe a systematic approach that makes it possible to demonstrate gene loss in the chicken genome even if a pseudogene has not been found. By using phylogenetic and synteny analysis in vertebrates, genome-wide comparisons between the chicken genome and expressed sequence tags, RNAseq data analysis, statistical analysis of the chicken genome, and radiation hybrid mapping, we show that resistin, TNFα, and PAI-1 (SERPINE1), three genes encoding adipokines inhibiting insulin sensitivity, have been lost in chicken and zebra finch genomes. Moreover, omentin, a gene encoding an adipokine that enhances insulin sensitivity, has also been lost in the chicken genome. Overall, only one adipokine inhibiting insulin sensitivity and five adipokines enhancing insulin sensitivity are still present in the chicken genome. These genetic differences between mammals and chicken, given the functions of the genes in mammals, would have dramatic consequences on chicken endocrinology, leading to novel equilibriums especially in the regulation of energy metabolism, insulin sensitivity, as well as appetite and reproduction.


Subject(s)
Adipokines/genetics , Avian Proteins/genetics , Chickens/genetics , Gene Deletion , Insulin/metabolism , Animals , Evolution, Molecular , Female , Male , Phylogeny , Reproduction/genetics , Sequence Analysis, RNA , Synteny , Vertebrates/genetics
15.
Br J Nutr ; 111(5): 761-72, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24094087

ABSTRACT

n-3 PUFA are crucial for health and development. Their effects as regulators of lipid and glucose metabolism are well documented. They also appear to affect protein metabolism, especially by acting on insulin sensitivity. The aim of the present study was to investigate the role of n-3 PUFA, i.e. the precursor α-linolenic acid (ALA) 18:3n-3 or long-chain PUFA (LC-PUFA), in chickens, by focusing on their potential function as co-regulators of the insulin anabolic signalling cascade. Ross male broilers were divided into six dietary treatment groups. Diets were isoproteic (22 % crude protein) and isoenergetic (12·54 MJ metabolisable energy/kg) and contained similar lipid levels (6 %) provided by different proportions of various lipid sources: oleic sunflower oil rich in 18:1n-9 as control; fish oil rich in LC-PUFA; rapeseed and linseed oils providing ALA. The provision of diets enriched with n-3 PUFA, i.e. rich in LC-PUFA or in the precursor ALA, for 3 weeks improved the growth performance of chickens, whereas that of only the ALA diet enhanced the development of the pectoralis major muscle. At 23 d of age, we studied the insulin sensitivity of the pectoralis major muscle and liver of chickens after an intravenous injection of insulin or saline. The present results indicate that the activation patterns of n-3 PUFA are different in the liver and muscles. An ALA-enriched diet may improve insulin sensitivity in muscles, with greater activation of the insulin-induced 70 kDa ribosomal protein S6 kinase/ribosomal protein S6 pathway involved in the translation of mRNA into proteins, thereby potentially increasing muscle protein synthesis and growth. Our findings provide a basis on which to optimise dietary fatty acid provision in growing animals.


Subject(s)
Avian Proteins/metabolism , Chickens/metabolism , Diet/veterinary , Fatty Acids, Omega-3/metabolism , Insulin/metabolism , Receptor, Insulin/metabolism , Signal Transduction , Animals , Animals, Inbred Strains , Avian Proteins/biosynthesis , Avian Proteins/genetics , Chickens/growth & development , Energy Intake , Fatty Acids, Monounsaturated , Fish Oils/metabolism , France , Insulin Resistance , Linseed Oil/metabolism , Liver/growth & development , Liver/metabolism , Male , Muscle Development , Organ Specificity , Pectoralis Muscles/growth & development , Pectoralis Muscles/metabolism , Plant Oils/metabolism , Rapeseed Oil , Sunflower Oil , Weight Gain
16.
BMC Genet ; 13: 90, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-23088779

ABSTRACT

BACKGROUND: Slow-growing lines are widely used in France for the production of high quality free-range chickens. While such production is mainly dedicated to the whole carcass market, new prospects are opening up for the development of cuts and processed products. Whether the body composition and meat quality of slow-growing birds can be improved by selection has thus become an important issue. The genetic parameters of growth, body composition and breast meat quality traits were evaluated in relation to behaviour at slaughter in a large pedigree population including 1022 male and female slow-growing birds. RESULTS: The heritability coefficients (h²) of body weight and body composition traits varied from 0.3 to 0.5. Abdominal fat percentage was genetically positively correlated with body weight but negatively correlated with breast muscle yield. The characteristics of the breast meat (i.e., post-mortem fall in pH, colour, drip loss, shear-force and lipid content) were all heritable, with h² estimates ranging from 0.18 to 0.48. The rate and extent of the fall in pH were under different genetic control. Strong negative genetic correlations were found between the ultimate pH and the lightness, yellowness and drip loss of the meat. Wing flapping on the shackle line was significantly heritable and exhibited marked genetic correlations with the pH at 15 min post-slaughter and the redness of the meat. The genetic relationships between meat quality traits, body weight and body composition appeared slightly different between males and females. CONCLUSION: This study suggested that there are a number of important criteria for selection on carcass and breast meat quality in slow-growing birds. Selection for reduced abdominal fatness and increased breast muscle yield should be effective as both traits were found to be highly heritable and favourably correlated. Substantial improvement in meat quality could be achieved by selection on ultimate pH which was highly heritable and strongly correlated with the colour and water-holding capacity of the meat. Moreover, this study revealed for the first time that the behaviour at slaughter is partly genetically determined in the chicken.


Subject(s)
Chickens/growth & development , Chickens/genetics , Genetic Variation , Meat/standards , Animals , Body Composition/genetics , Body Weight/genetics , Female , Male , Meat/analysis , Phenotype
17.
Br J Nutr ; 101(4): 510-7, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18616836

ABSTRACT

The susceptibility to develop hepatic steatosis is known to differ between duck species, especially between Muscovy and Pekin ducks. This difference could be explained by either differential responses of species to overfeeding or genetic differences in hepatic lipid metabolism. The aim of the present study was to compare the intensities of the different hepatic pathways (oxidation, lipogenesis, esterification, secretion, etc.) of the two main nutrients (glucose and linoleic acid (LA)) reaching the liver of ad libitum-fed Muscovy (n 6) and Pekin (n 6) ducks using the ex vivo method of liver slices incubated for 16 h with [U-14C]glucose, [1-14C]LA and [35S]methionine added to the survival medium. In such experimental conditions, the lipogenesis pathway from glucose was 2-fold higher (P<0.05) in the liver of the Muscovy duck than in that of the Pekin duck. Furthermore, the hepatic uptake of LA was 2-fold higher (P<0.05) in the Muscovy duck than in the Pekin duck leading to a 2-fold higher (P<0.05) esterification of this fatty acid in the liver of the Muscovy duck. The hepatic secretion of VLDL was higher (P<0.01) in the Muscovy duck than in the Pekin duck but insufficient to prevent lipid accumulation in the liver of the Muscovy duck. In conclusion, these results show the influence of the species on the hepatic metabolism of ducks in relation to their susceptibility to develop fatty liver. These results should shed light on the metabolic regulations that might underlie susceptibility to hepatic steatosis in the the human liver.


Subject(s)
Fatty Liver/veterinary , Glucose/metabolism , Linoleic Acid/metabolism , Liver/metabolism , Poultry Diseases/metabolism , Animal Feed , Animals , Disease Susceptibility , Ducks , Fatty Liver/genetics , Fatty Liver/metabolism , Genotype , Glucose/pharmacology , Linoleic Acid/pharmacology , Lipoproteins, VLDL/metabolism , Methionine/pharmacology , Models, Animal , Poultry Diseases/genetics , Species Specificity , Tissue Culture Techniques
18.
Article in English | MEDLINE | ID: mdl-18687407

ABSTRACT

There are genetic differences in the hepatic glucose and linoleic acid metabolisms between Muscovy and Pekin ducks ad libitum-fed. To understand the effect of overfeeding on the hepatic metabolisms in these two species of ducks, we compared the different pathways of glucose and linoleic acid reaching the liver of Muscovy (Cairina moschata) (n=6) and Pekin (Anas platyrhynchos) (n=6) ducks overfed for 1 week and sacrificed 2-4 h after their last meal by using the ex vivo method of liver slices incubated for 16 h with [U-(14)C]-glucose, [1-(14)C]-linoleic acid and [(35)S]-methionine added to the survival medium. The glucose was the main precursor of triacylglycerol synthesis in the liver of these two species and its hepatic metabolism was similar between species. The hepatic uptake of linoleic acid was 1.7-fold higher (P=0.020) in the Muscovy duck than in the Pekin duck leading to a 1.9-fold higher (P=0.017) esterification of this fatty acid in the liver of the Muscovy duck than in that of the Pekin duck. Finally, both species after 1 week of overfeeding exhibited the same capacity to secrete VLDL remaining insufficient to avoid hepatic steatosis.


Subject(s)
Ducks/metabolism , Glucose/metabolism , Linoleic Acid/metabolism , Liver/metabolism , Animals , Ducks/classification , Ducks/growth & development , Eating , Fatty Liver/etiology , Fatty Liver/metabolism , In Vitro Techniques , Lipoproteins, VLDL/metabolism , Male , Methionine/metabolism , Species Specificity
19.
Article in English | MEDLINE | ID: mdl-17081789

ABSTRACT

We evaluated the effects of genotype (Muscovy, Pekin and their crossbreed hinny and mule ducks) and feeding levels (overfeeding between 12 and 14 weeks of age vs ad libitum feeding) on energy metabolism and lipid deposition in breast muscle of ducks. Samples of breast muscle (Pectoralis major) were collected at 14 weeks of age from 8 birds per group. Overfeeding induced an accumulation of lipids in breast muscle (1.5- to 1.7-fold, depending on genotype) mainly induced by triglyceride deposition. It also induced a considerable increase in the amounts (expressed as g/100 g of tissue) of saturated and mono-unsaturated fatty acids (SFA, MUFA), while the amounts of poly-unsaturated fatty acids (PUFA) remained unchanged in hinny and Muscovy ducks or slightly increased in Pekin and mule ducks. In breast muscle, overfeeding decreased the activity of the main enzymes involved in lipogenesis from glucose (glucose-6-phosphate dehydrogenase, G6PDH, malic enzyme, ME, acetyl CoA carboxylase, ACX). Lipoprotein lipase (LPL) activity in Pectoralis major muscle was also significantly decreased (-21%). The ability of muscle tissues to catabolize long-chain fatty acids, as assessed by beta-hydroxyacyl CoA dehydrogenase (HAD) activity, was increased in Pectoralis major muscle, as was cytochrome-c oxidase (COX) activity. Hybrid and Pekin ducks exhibited higher levels of ACX and LPL activity in Pectoralis major muscle than Muscovy ducks, suggesting a greater ability to synthesise lipids in situ, and to take up circulating lipids. Total lipid content in breast muscle of hybrid and Pekin ducks was higher than in that of Muscovy ducks. In hybrid and Pekin ducks, lipid composition of breast muscle was characterized by higher amounts of triglycerides, SFA and MUFA than in Muscovy ducks. Finally, oxidative metabolism was greater in Pectoralis major muscles of hybrid and Pekin ducks than in Muscovy ducks, suggesting an adaptative strategy of muscle energy metabolism according to lipid level.


Subject(s)
Ducks/genetics , Ducks/metabolism , Eating , Energy Metabolism , Lipid Metabolism , Pectoralis Muscles/metabolism , Animal Feed , Animals , Cholesterol/metabolism , Crosses, Genetic , Female , Genotype , Lipoprotein Lipase/metabolism , Male , Pectoralis Muscles/chemistry , Phospholipids/metabolism , Triglycerides/metabolism
20.
Article in English | MEDLINE | ID: mdl-16963298

ABSTRACT

We evaluated the effects of genotype (Muscovy, Pekin and their crossbreed hinny and mule ducks) and feeding levels (overfeeding between 12 and 14 weeks of age vs ad libitum feeding) on liver ability for lipogenesis and lipid secretion in ducks. Samples of liver and blood were collected at 14 weeks of age from 8 birds per group. Plasma levels of insulin was considerably increased in overfed ducks (1.9-fold), stimulating the hepatic activity of the main enzymes involved in lipogenesis from glucose (glucokinase, GK, glucose-6-phosphate dehydrogenase, G6PDH, malic enzyme, ME, acetyl CoA carboxylase, ACX), while cytochrome-c oxidase (COX) activity, indicating overall oxidation ability of energy-yielding substrates, remained unchanged. Plasma levels of triglycerides, phospholipids and total cholesterol were therefore increased (1.9, 3.7, 1.6 and 1.6-fold, respectively). Glycaemia also significantly increased (+8%). Pekin ducks exhibited higher levels of GK and G6PDH activity in the liver than Muscovy ducks, suggesting a greater ability to use glucose consistent with their lower glycaemia. Muscovy ducks had greater ACX activity, suggesting greater ability to synthesise lipids. However, plasma lipid levels were much higher in Pekin ducks than in Muscovy ducks, suggesting a greater ability to export lipids from the liver. Values for the different criteria measured in this study were intermediate or similar in hinny and mule ducks to those of parental species. The high values for GK, G6PDH, ME and ACX activity in hybrid ducks enabled them to produce heavy fatty livers with the same chemical and lipid composition as Muscovy ducks and characterised by high amounts of triglycerides (around 96% of total lipids), and saturated and mono-unsaturated fatty acids.


Subject(s)
Ducks/genetics , Ducks/metabolism , Eating , Lipid Metabolism , Liver/metabolism , Animal Feed , Animals , Blood Glucose , Female , Genotype , Glucose/metabolism , Insulin/blood , Lipids/blood , Lipogenesis , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...