Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Bioresour Technol ; 399: 130572, 2024 May.
Article in English | MEDLINE | ID: mdl-38492651

ABSTRACT

Aqueous phase reforming has been explored for renewable H2 production from waste biomass. Promising results have been reported for pyrolysis bio-oil aqueous fractions (AFB), but economical assessments are needed to determine process feasibility, which requires both energy consumption minimization and optimal H2 valorization. This work compares different alternatives using process simulation and economic evaluation computational tools. Experimental results and a specific thermodynamic model are used to set mass balances. An adequate heat integration allows to reduce the process energy demand, covering the 100 % of the reactor duty. Optimal H2 unit cost is achieved if part of the produced H2 is valorized for energy self-covering and the rest is commercialized. Renewable H2 net production of c.a. 3.3 kgH2/m3 of treated AFB at a preliminary 1-2 €/kg unit cost is estimated, which can be considered as competitive with green H2, even though a case of diluted AFB is considered.


Subject(s)
Hydrogen , Polyphenols , Pyrolysis , Rivers , Plant Oils , Water , Biomass
2.
Phys Med ; 97: 44-49, 2022 May.
Article in English | MEDLINE | ID: mdl-35367851

ABSTRACT

PURPOSE: Image guided radiotherapy (IGRT) strategies allow detecting and monitoring anatomical changes during external beam radiotherapy (EBRT). However, assessing the dosimetric impact of anatomical changes is not straightforward. In current IGRT strategies dose volume histograms (DVH) are not available due to lack of contours and dose recalculations on the cone-beam CT (CBCT) scan. This study investigates the feasibility of using automatically calculated DVH parameters in CBCTs using an independent dose calculation engine and propagated contours. METHOD: A prospective study (NCT03385031) of thirty-one breast cancer patients who received additional CBCT imaging (N = 70) was performed. Manual and automatically propagated contours were generated for all CBCTs and an automatic dose recalculation was performed. Differences between planned and CBCT-derived DVH parameters (mean and maximum dose to targets, 95% volume coverage to targets and mean heart dose (MHD)) were calculated using the dose verification system with manual and propagated contours and, in both cases, benchmarked against DVH differences quantified in the TPS using manually contoured CBCTs. RESULTS: Differences in DVH parameters between the TPS and dose verification system with propagated contours were -1.3% to 0.7% (95% CI) for mean dose to the target volume, -0.3 to 0.2 Gy (95% CI) in MHD and -3.9% to 2.9% (95% CI) in target volume coverage. CONCLUSION: The use of an independent fully automatic dose verification system with contour propagation showed to be feasible and sufficiently reliable to recalculate CBCT based DVHs during breast EBRT. Volume coverage parameters, i.e. V95%, proved to be especially sensitive to contouring differences.


Subject(s)
Radiotherapy, Image-Guided , Radiotherapy, Intensity-Modulated , Cone-Beam Computed Tomography/methods , Humans , Prospective Studies , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Radiotherapy, Intensity-Modulated/methods
3.
J Mater Chem B ; 8(24): 5293-5304, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32452503

ABSTRACT

This work shows the application of carbon nanocapsules as carriers for sodium ibuprofen release. Hard templating was used to prepare spherical carbon nanocapsules (mean diameter and thick shell of 690 and 70 nm, respectively), exhibiting both micro and mesoporosity. For comparison purposes, a microporous commercial activated carbon and a home-made mesoporous CMK-3 were also studied. All carbons showed similar drug uptake, although microporous commercial carbon and nanocapsules showed higher uptake at low equilibrium concentration due to higher adsorption potential in micropores. Higher and faster release of sodium ibuprofen was observed for carbon nanocapsules at pH 1.8 and 7.4 for a starting load ca. 250 mg g-1. Subsequent loading of carbon nanocapsules by successive evaporation cycles led to a remarkable load of ca. 6010 mg g-1 thanks to sodium ibuprofen filling the internal void volume. In spite of the very high load a fast release was observed at pH 7.4, reaching a release of ca. 100% of the initial sodium ibuprofen load. However, a much slower and lower release was observed at pH 1.8. Thus, the system developed has interesting features for oral drug administration thanks to low toxicity of porous carbon, low release in gastric medium and important release in intestinal medium.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Carbon/chemistry , Ibuprofen/chemistry , Nanocapsules/chemistry , Administration, Oral , Adsorption , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Drug Carriers/chemistry , Drug Liberation , Ibuprofen/administration & dosage , Particle Size , Porosity , Surface Properties
4.
Brachytherapy ; 18(6): 852-862, 2019.
Article in English | MEDLINE | ID: mdl-31327634

ABSTRACT

PURPOSE: The Bravos afterloader system was released by Varian Medical Systems in October of 2018 for high-dose-rate brachytherapy with 192Ir sources, containing new features such as the CamScale (a new device for daily quality assurance and system recalibration), channel length verification, and different settings for rigid and flexible applicators. This study mechanically evaluated the Bravos system precision and accuracy for clinically relevant scenarios, using dummy sources. METHODS AND MATERIALS: The system was evaluated after three sets of experiments: (1) The CamScale was used to verify inter- and intra-channel dwelling variability and system calibration; (2) A high-speed camera was used to verify the source simulation cable movement inside a transparent quality assurance device, where dwell positions, dwell times, transit times, speed profiles, and accelerations were measured; (3) The source movement inside clinical applicators was captured with an imaging panel while being exposed to an external kV source. Measured and planned dwell positions and times were compared. RESULTS: Maximum deviations between planned and measured dwell positions and times for the source cable were 0.4 mm for the CamScale measurements and 0.07 seconds for the high-speed camera measurements. Mean dwell position deviations inside clinical applicators were below 1.2 mm for all applicators except the ring that required an offset correction of 1 mm to achieve a mean deviation of 0.4 mm. CONCLUSIONS: Features of the Bravos afterloader system provide a robust and precise treatment delivery. All measurements were within manufacturer specifications.


Subject(s)
Brachytherapy/instrumentation , Neoplasms/radiotherapy , Calibration , Equipment Design , Humans , Iridium Radioisotopes/therapeutic use , Radiotherapy Dosage
5.
Phys Med Biol ; 63(3): 035033, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29176074

ABSTRACT

Independent verification of complex treatment delivery with megavolt photon beam radiotherapy (RT) has been effectively used to detect and prevent errors. This work presents the validation and uncertainty analysis of a model that predicts 2D portal dose images (PDIs) without a patient or phantom in the beam. The prediction model is based on an exponential point dose model with separable primary and secondary photon fluence components. The model includes a scatter kernel, off-axis ratio map, transmission values and penumbra kernels for beam-delimiting components. These parameters were derived through a model fitting procedure supplied with point dose and dose profile measurements of radiation fields. The model was validated against a treatment planning system (TPS; Eclipse) and radiochromic film measurements for complex clinical scenarios, including volumetric modulated arc therapy (VMAT). Confidence limits on fitted model parameters were calculated based on simulated measurements. A sensitivity analysis was performed to evaluate the effect of the parameter uncertainties on the model output. For the maximum uncertainty, the maximum deviating measurement sets were propagated through the fitting procedure and the model. The overall uncertainty was assessed using all simulated measurements. The validation of the prediction model against the TPS and the film showed a good agreement, with on average 90.8% and 90.5% of pixels passing a (2%,2 mm) global gamma analysis respectively, with a low dose threshold of 10%. The maximum and overall uncertainty of the model is dependent on the type of clinical plan used as input. The results can be used to study the robustness of the model. A model for predicting accurate 2D pre-treatment PDIs in complex RT scenarios can be used clinically and its uncertainties can be taken into account.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Lung Neoplasms/radiotherapy , Models, Theoretical , Phantoms, Imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Male , Radiometry/methods , Radiotherapy Dosage , Uncertainty
6.
Acta Oncol ; 56(11): 1487-1494, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28849731

ABSTRACT

BACKGROUND: Dose-guided adaptive radiation therapy (DGART) is the systematic evaluation and adaptation of the dose delivery during treatment for an individual patient. The aim of this study is to define quantitative action levels for DGART by evaluating changes in 3D dose metrics in breast cancer and correlate them with clinical expert evaluation. MATERIAL AND METHODS: Twenty-three breast cancer treatment plans were evaluated, that were clinically adapted based on institutional IGRT guidelines. Reasons for adaptation were variation in seroma, hematoma, edema, positioning or problems using voluntary deep inspiration breath hold. Sixteen patients received a uniform dose to the breast (clinical target volume 1; CTV1). Six patients were treated with a simultaneous integrated boost to CTV2. The original plan was copied to the CT during treatment (re-CT) or to the stitched cone-beam CT (CBCT). Clinical expert evaluation of the re-calculated dose distribution and extraction of dose-volume histogram (DVH) parameters were performed. The extreme scenarios were evaluated, assuming all treatment fractions were given to the original planning CT (pCT), re-CT or CBCT. Reported results are mean ± SD. RESULTS: DVH results showed a mean dose (Dmean) difference between pCT and re-CT of -0.4 ± 1.4% (CTV1) and -1.4 ± 2.1% (CTV2). The difference in V95% was -2.6 ± 4.4% (CTV1) and -9.8 ± 8.3% (CTV2). Clinical evaluation and DVH evaluation resulted in a recommended adaptation in 17/23 or 16/23 plans, respectively. Applying thresholds on the DVH parameters: Dmean CTV, V95% CTV, Dmax, mean lung dose, volume exceeding 107% (uniform dose) or 90% (SIB) of the prescribed dose enabled the identification of patients with an assumed clinically relevant dose difference, with a sensitivity of 0.89 and specificity of 1.0. Re-calculation on CBCT imaging identified the same plans for adaptation as re-CT imaging. CONCLUSIONS: Clinical expert evaluation can be related to quantitative DVH parameters on re-CT or CBCT imaging to select patients for DGART.


Subject(s)
Breast Neoplasms/radiotherapy , Decision Support Techniques , Imaging, Three-Dimensional/methods , Organs at Risk/radiation effects , Radiotherapy Planning, Computer-Assisted/methods , Cone-Beam Computed Tomography/methods , Female , Humans , Image Processing, Computer-Assisted/methods , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies
7.
ACS Appl Mater Interfaces ; 5(11): 4725-30, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23639326

ABSTRACT

In this study, we explore the use of atmospheric pressure plasmas for enhancing the adhesion of SiC surfaces using a urethane adhesive, as an alternative to grit-blasting. Surface analysis showed that He-O2 plasma treatments resulted in a hydrophilic surface mostly by producing SiOx. Four-point bending tests and bonding pull tests were carried out on control, grit-blasted, and plasma-treated surfaces. Grit-blasted samples showed enhanced bonding but also a decrease in flexural strength. Plasma treated samples did not affect the flexural strength of the material and showed an increase in bonding strength. These results suggest that atmospheric pressure plasma treatment of ceramic materials is an effective alternative to grit-blasting for adhesion enhancement.

SELECTION OF CITATIONS
SEARCH DETAIL
...