Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893461

ABSTRACT

Metronidazole (MTZ) is the most common drug used against Trichomonas vaginalis (T. vaginalis) infections; however, treatment failures and high rates of recurrence of trichomoniasis have been reported, suggesting the presence of resistance in T. vaginalis to MTZ. Therefore, research into new therapeutic options against T. vaginalis infections has become increasingly urgent. This study investigated the trichomonacidal activity of a series of five imidazole carbamate compounds (AGR-1, AGR-2, AGR-3, AGR-4, and AGR-5) through in vitro susceptibility assays to determine the IC50 value of each compound. All five compounds demonstrated potent trichomonacidal activity, with IC50 values in the nanomolar range and AGR-2 being the most potent (IC50 400 nM). To gain insight into molecular events related to AGR-induced cell death in T. vaginalis, we analyzed the expression profiles of some metabolic genes in the trophozoites exposed to AGR compounds and MTZ. It was found that both AGR and MTZ compounds reduced the expression of the glycolytic genes (CK, PFK, TPI, and ENOL) and genes involved in metabolism (G6PD, TKT, TALDO, NADHOX, ACT, and TUB), suggesting that disturbing these key metabolic genes alters the survival of the T. vaginalis parasite and that they probably share a similar mechanism of action. Additionally, the compounds showed low cytotoxicity in the Caco-2 and HT29 cell lines, and the results of the ADMET analysis indicated that these compounds have pharmacokinetic properties similar to those of MTZ. The findings offer significant insights that can serve as a basis for future in vivo studies of the compounds as a potential new treatment against T. vaginalis.


Subject(s)
Carbamates , Imidazoles , Trichomonas vaginalis , Trichomonas vaginalis/drug effects , Trichomonas vaginalis/genetics , Trichomonas vaginalis/growth & development , Imidazoles/pharmacology , Imidazoles/chemistry , Humans , Carbamates/pharmacology , Carbamates/chemistry , Metronidazole/pharmacology , Metronidazole/chemistry , Gene Expression Regulation/drug effects , Trophozoites/drug effects
2.
Int J Mol Sci ; 24(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37511272

ABSTRACT

Giardiasis, which is caused by Giardia lamblia infection, is a relevant cause of morbidity and mortality worldwide. Because no vaccines are currently available to treat giardiasis, chemotherapeutic drugs are the main options for controlling infection. Evidence has shown that the nitro drug nitazoxanide (NTZ) is a commonly prescribed treatment for giardiasis; however, the mechanisms underlying NTZ's antigiardial activity are not well-understood. Herein, we identified the glucose-6-phosphate::6-phosphogluconate dehydrogenase (GlG6PD::6PGL) fused enzyme as a nitazoxanide target, as NTZ behaves as a GlG6PD::6PGL catalytic inhibitor. Furthermore, fluorescence assays suggest alterations in the stability of GlG6PD::6PGL protein, whereas the results indicate a loss of catalytic activity due to conformational and folding changes. Molecular docking and dynamic simulation studies suggest a model of NTZ binding on the active site of the G6PD domain and near the structural NADP+ binding site. The findings of this study provide a novel mechanistic basis and strategy for the antigiardial activity of the NTZ drug.


Subject(s)
Giardia lamblia , Giardiasis , Humans , Giardiasis/drug therapy , Molecular Docking Simulation , Thiazoles/pharmacology , Thiazoles/therapeutic use
3.
Molecules ; 27(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36558035

ABSTRACT

Protozoan parasites, such as Giardia lamblia and Trichomonas vaginalis, cause the most prevalent infections in humans in developing countries and provoke significant morbidity and mortality in endemic countries. Despite its side-effects, metronidazole is still the drug of choice as a giardiacidal and trichomonacidal tissue-active agent. However, the emergence of metronidazole resistance and its evolved strategies of parasites to evade innate host defenses have hindered the identification and development of new therapeutic strategies against these parasites. Here, we tested five synthesized benzimidazole derivatives as possible drugs for treating giardiasis and trichomoniasis, probing the bifunctional enzyme glucose 6-phosphate dehydrogenase::6-phosphogluconolactone from G. lamblia (GlG6PD::6PGL) and T. vaginalis (TvG6PD::6PGL) as a drug target. The investigated benzimidazole derivatives were H-B2M1, H-B2M2, H2N-BZM6, O2N-BZM7, and O2N-BZM9. The recombinant enzymes were used in inhibition assays, and in silico computational predictions and spectroscopic studies were applied to follow the structural alteration of the enzymes and identify the possible mechanism of inhibition. We identified two potent benzimidazole compounds (O2N-BZM7 and O2N-BZM9), which are capable of inhibiting both protozoan G6PD::6PGL enzymes and in vitro assays with these parasites, showing that these compounds also affect their viability. These results demonstrate that other therapeutic targets of the compounds are the enzymes GlG6PD::6PGL and TvG6PD::6PGL, which contribute to their antiparasitic effect and their possible use in antigiardial and trichomonacidal therapies.


Subject(s)
Antiprotozoal Agents , Giardia lamblia , Parasites , Trichomonas vaginalis , Animals , Humans , Metronidazole/pharmacology , Antiparasitic Agents/pharmacology , Benzimidazoles/pharmacology , Antiprotozoal Agents/pharmacology
4.
Molecules ; 27(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35208965

ABSTRACT

Trichomoniasis is a sexually transmitted disease with a high incidence worldwide, affecting 270 million people. Despite the existence of a catalog of available drugs to combat this infection, their extensive use promotes the appearance of resistant Trichomonas vaginalis (T. vaginalis), and some side effects in treated people, which are reasons why it is necessary to find new alternatives to combat this infection. In this study, we investigated the impact of an in-house library comprising 55 compounds on the activity of the fused T. vaginalis G6PD::6PGL (TvG6PD::6PGL) protein, a protein mediating the first reaction step of the pentose phosphate pathway (PPP), a crucial pathway involved in the parasite's energy production. We found four compounds: JMM-3, CNZ-3, CNZ-17, and MCC-7, which inhibited the TvG6PD::6PGL protein by more than 50%. Furthermore, we determined the IC50, the inactivation constants, and the type of inhibition. Our results showed that these inhibitors induced catalytic function loss of the TvG6PD::6PGL enzyme by altering its secondary and tertiary structures. Finally, molecular docking was performed for the best inhibitors, JMM-3 and MCC-7. All our findings demonstrate the potential role of these selected hit compounds as TvG6PD::6PGL enzyme selective inhibitors.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins , Enzyme Inhibitors/chemistry , Glucosephosphate Dehydrogenase , Molecular Docking Simulation , Trichomonas vaginalis/enzymology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Glucosephosphate Dehydrogenase/chemistry , Kinetics
5.
Genes (Basel) ; 12(9)2021 08 27.
Article in English | MEDLINE | ID: mdl-34573317

ABSTRACT

Gliomas are heterogeneous, solid, and intracranial tumors that originate from glial cells. Malignant cells from the tumor undergo metabolic alterations to obtain the energy required for proliferation and the invasion of the cerebral parenchyma. The alterations in the expression of the genes related to the metabolic pathways can be detected in biopsies of gliomas of different CNS WHO grades. In this study, we evaluated the expression of 16 candidate reference genes in the HMC3 microglia cell line. Then, statistical algorithms such as BestKeeper, the comparative ΔCT method, geNorm, NormFinder, and RefFinder were applied to obtain the genes most suitable to be considered as references for measuring the levels of expression in glioma samples. The results show that PKM and TPI1 are two novel genes suitable for genic expression studies on gliomas. Finally, we analyzed the expression of genes involved in metabolic pathways in clinical samples of brain gliomas of different CNS WHO grades. RT-qPCR analysis showed that in CNS WHO grade 3 and 4 gliomas, the expression levels of HK1, PFKM, GAPDH, G6PD, PGD1, IDH1, FASN, ACACA, and ELOVL2 were higher than those of CNS WHO grade 1 and 2 glioma biopsies. Hence, our results suggest that reference genes from metabolic pathways have different expression profiles depending on the stratification of gliomas and constitute a potential model for studying the development of this type of tumor and the search for molecular targets to treat gliomas.


Subject(s)
Real-Time Polymerase Chain Reaction , Reference Standards
6.
Molecules ; 26(16)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34443540

ABSTRACT

Helicobacter pylori (H. pylori) is a pathogen that can remain in the stomach of an infected person for their entire life. As a result, this leads to the development of severe gastric diseases such as gastric cancer. In addition, current therapies have several problems including antibiotics resistance. Therefore, new practical options to eliminate this bacterium, and its induced affections, are required to avoid morbidity and mortality worldwide. One strategy in the search for new drugs is to detect compounds that inhibit a limiting step in a central metabolic pathway of the pathogen of interest. In this work, we tested 55 compounds to gain insights into their possible use as new inhibitory drugs of H. pylori glucose-6-phosphate dehydrogenase (HpG6PD) activity. The compounds YGC-1; MGD-1, MGD-2; TDA-1; and JMM-3 with their respective scaffold 1,3-thiazolidine-2,4-dione; 1H-benzimidazole; 1,3-benzoxazole, morpholine, and biphenylcarbonitrile showed the best inhibitory activity (IC50 = 310, 465, 340, 204 and 304 µM, respectively). We then modeled the HpG6PD protein by homology modeling to conduct an in silico study of the chemical compounds and discovers its possible interactions with the HpG6PD enzyme. We found that compounds can be internalized at the NADP+ catalytic binding site. Hence, they probably exert a competitive inhibitory effect with NADP+ and a non-competitive or uncompetitive effect with G6P, that of the compounds binding far from the enzyme's active site. Based on these findings, the tested compounds inhibiting HpG6PD represent promising novel drug candidates against H. pylori.


Subject(s)
Computer Simulation , Enzyme Inhibitors/pharmacology , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Helicobacter pylori/enzymology , Genetic Vectors/metabolism , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/metabolism , Helicobacter pylori/drug effects , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Recombinant Proteins/isolation & purification , Structural Homology, Protein
7.
Int J Mol Sci ; 21(8)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326520

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most frequent human enzymopathy, affecting over 400 million people globally. Worldwide, 217 mutations have been reported at the genetic level, and only 19 have been found in Mexico. The objective of this work was to contribute to the knowledge of the function and structure of three single natural variants (G6PD A+, G6PD San Luis Potosi, and G6PD Guadalajara) and a double mutant (G6PD Mount Sinai), each localized in a different region of the three-dimensional (3D) structure. In the functional characterization of the mutants, we observed a decrease in specific activity, protein expression and purification, catalytic efficiency, and substrate affinity in comparison with wild-type (WT) G6PD. Moreover, the analysis of the effect of all mutations on the structural stability showed that its presence increases denaturation and lability with temperature and it is more sensible to trypsin digestion protease and guanidine hydrochloride compared with WT G6PD. This could be explained by accelerated degradation of the variant enzymes due to reduced stability of the protein, as is shown in patients with G6PD deficiency.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency/enzymology , Glucosephosphate Dehydrogenase Deficiency/genetics , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/metabolism , Anilino Naphthalenesulfonates/chemistry , Catalysis , Circular Dichroism , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/isolation & purification , Glucosephosphate Dehydrogenase Deficiency/metabolism , Guanidine , Humans , Kinetics , Mexico , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Stability , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Software , Temperature , Trypsin/chemistry
8.
Acta bioquím. clín. latinoam ; 41(2): 237-245, abr.-jun. 2007. ilus, graf, tab
Article in Spanish | LILACS | ID: lil-633009

ABSTRACT

El agente tensioactivo pulmonar es un material compuesto de fosfolípidos, lípidos neutros y proteínas que se encuentra en la superficie alveolar de los pulmones y facilita la ventilación alveolar. La organización molecular de los componentes del agente tensioactivo aislado de pulmones de ternera fue analizada por calorimetría diferencial de barrido y por dispersión dinámica de luz y posteriormente comparada con los componentes organizados en liposomas uni y multilamelares; además, se probó la actividad de superficie al desarrollar en cobayos el síndrome de dificultad respiratoria. Los estudios de calorimetría mostraron que las interacciones lípido-proteína fueron considerablemente abatidas en el agente tensioactivo nativo, en comparación con las del agente tensioactivo en forma de liposomas uni o multilamelares. Los experimentos de dispersión dinámica de luz indicaron que el agente tensioactivo nativo tiene forma fibrilar con interacciones limitadas entre lípidos y proteínas, lo que sugiere que se encuentra organizado en una estructura en forma de reja formando una película de estructura estable. Los resultados obtenidos resaltan la importancia de la organización molecular del agente tensioactivo. Cuando éste fue usado para tratar a los animales con síndrome de dificultad respiratoria, los valores del pH arterial y de PaCO2 mejoraron casi hasta alcanzar los valores normales; cuando se utilizó el agente tensioactivo reconstituído como liposomas uni o multilamelares, los animales no se recuperaron. Es importante enfatizar que el método seguido en el protocolo de aislamiento del agente tensioactivo pulmonar de ternera permitió obtenerlo en una forma fisiológicamente activa.


Surfactant, a highly surface-active material composed of phospholipids, neutral lipids and proteins, lines the lungs' alveolar surface facilitating alveolar ventilation. The molecular organization of surfactant components isolated from calf-lungs was analyzed by differential-scanning calorimetry and dynamic light-scattering, and subsequently compared to surfactant components organized in uni and multilamellar liposomes. The respiratory distress syndrome developed in adult guinea pigs was used for assessing surfactant activity. Calorimetry studies showed that lipid-protein interactions were considerably abated in native surfactant as compared to those of surfactant in uni or multi-lamellar liposomes. Light-scattering experiments indicated that native surfactant has a fibrillar shape with limited lipid-protein interactions, suggesting that it is organized in a lattice-like structure forming a stable film. These findings underscore the importance of the native molecular organization of surfactant. When surfactant reconstituted as uni- or multilamellar liposomes was administred to animals under respiratory distress, they did not recover. In contrast, when native surfactant was used to treat sick animals, arterial pH and PaCO2 values improved, almost reaching normal values. It is important to emphasize that fewer steps in the protocol for isolation of calf lung surfactant made it possible to obtain it in a physiologically active molecular form.


Subject(s)
Animals , Cattle , Guinea Pigs , Respiratory Distress Syndrome, Newborn/veterinary , Respiratory Distress Syndrome/veterinary , Pulmonary Surfactants/chemistry , Pulmonary Alveoli/physiology , Pulmonary Surfactants/therapeutic use , Calorimetry/veterinary , Dynamic Light Scattering/veterinary
11.
Mem. Inst. Oswaldo Cruz ; 99(8): 831-837, dez. 2004. ilus, tab, graf
Article in English | LILACS | ID: lil-393765

ABSTRACT

N-allyl (NAOx) and N-propyl (NPOx) oxamates were designed as inhibitors of alpha-hydroxyacid dehydrogenase (HADH) isozyme II from Trypanosoma cruzi. The kinetic studies showed that NAOx and NPOx were competitive inhibitors of HADH-isozyme II (Ki = 72 µM, IC50 = 0.33 mM and 70 µM, IC50 = 0.32 mM, respectively). The attachment of the allylic and propylic chains to nitrogen of the competitive inhibitor oxamate (Ki = 0.91 mM, IC50 = 4.25 mM), increased 12.6 and 13-folds respectively, the affinity for T. cruzi HADH-isozyme II. NAOx and NPOx were selective inhibitors of HADH-isozyme II, because other T. cruzi dehydrogenases were not inhibited by these substances. Since HADH-isozyme II participates in the energy metabolism of T. cruzi, a trypanocidal effect can be expected with these inhibitors. However, we were not able to detect any trypanocidal activity with these oxamates. When the corresponding ethyl esters of N-allyl (Et-NAOx) and N-propyl (Et-NPOx) oxamates were tested as a possible trypanocidal prodrugs, in comparison with nifurtimox and benznidazole, the expected trypanocidal effects were obtained.


Subject(s)
Animals , Mice , Enzyme Inhibitors , Trypanocidal Agents , Trypanosoma cruzi , Isoenzymes , Kinetics , Prodrugs
12.
Mem Inst Oswaldo Cruz ; 99(8): 831-7, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15761599

ABSTRACT

N-allyl (NAOx) and N-propyl (NPOx) oxamates were designed as inhibitors of alpha-hydroxyacid dehydrogenase (HADH) isozyme II from Trypanosoma cruzi. The kinetic studies showed that NAOx and NPOx were competitive inhibitors of HADH-isozyme II (Ki = 72 microM, IC50 = 0.33 mM and 70 microM, IC50 = 0.32 mM, respectively). The attachment of the allylic and propylic chains to nitrogen of the competitive inhibitor oxamate (Ki = 0.91 mM, IC50 = 4.25 mM), increased 12.6 and 13-folds respectively, the affinity for T. cruzi HADH-isozyme II. NAOx and NPOx were selective inhibitors of HADH-isozyme II, because other T. cruzi dehydrogenases were not inhibited by these substances. Since HADH-isozyme II participates in the energy metabolism of T. cruzi, a trypanocidal effect can be expected with these inhibitors. However, we were not able to detect any trypanocidal activity with these oxamates. When the corresponding ethyl esters of N-allyl (Et-NAOx) and N-propyl (Et-NPOx) oxamates were tested as a possible trypanocidal prodrugs, in comparison with nifurtimox and benznidazole, the expected trypanocidal effects were obtained.


Subject(s)
Alcohol Oxidoreductases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Insect Repellents/pharmacology , Oxamic Acid/analogs & derivatives , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/enzymology , Animals , Isoenzymes/antagonists & inhibitors , Kinetics , Mice , Organic Chemicals , Prodrugs
SELECTION OF CITATIONS
SEARCH DETAIL
...