Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 231: 276-286, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31129409

ABSTRACT

The formation of secondary organic aerosol (SOA) generated by irradiating styrene in the presence and/or absence of OH, NOx, H2O vapour and seed aerosol has been investigated for the first time. Experiments were conducted in a smog chamber at 298 K and atmospheric pressure. Styrene decay was measured by gas chromatography with a mass spectrometric detector (GC-MS), and the temporal evolution of the aerosol was monitored using a fast mobility particle sizer (FMPS). The SOA yield increases as the initial styrene concentration increases, leading to yields ranging from 1.8% to 3.5% for styrene photolysis, and from 2.4% to 5.0% for its photooxidation. In both cases, the organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. The particle number concentration, mass and yield decrease in the presence of NOx and seed aerosol but increase at higher relative humidity (RH). The gas phase and SOA composition were analysed offline using a filter/denuder sampling system simultaneously collecting gas- and particle-phase products. Benzaldehyde was confirmed as the main gas-phase product of the reaction. However, although products in the particle phase were detected, they could not be identified. Moreover, the aqueous filter extracts were analysed using UV-Visible spectrophotometry to determine differences in the optical properties of SOA produced in the presence and absence of NOx. The results from this work may be used to discuss the implications of atmospheric SOA generation from styrene degradation.


Subject(s)
Aerosols/chemistry , Hydroxyl Radical/chemistry , Styrene/chemistry , Gases , Models, Chemical , Photochemical Processes , Photolysis , Water
2.
Phys Chem Chem Phys ; 18(11): 7651-60, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26906609

ABSTRACT

Atmospheric iodine chemistry plays a key role in tropospheric ozone catalytic destruction, new particle formation, and as one of the possible sinks of gaseous polar elemental mercury. Moreover, it has been recently proposed that reaction of ozone with iodide on the sea surface could be the major contributor to the chemical loss of atmospheric ozone. However, the mechanism of the reaction between aqueous iodide and ozone is not well known. The aim of this paper is to improve the understanding of such a mechanism. In this paper, an ab initio study of the reaction of aqueous iodide and ozone is presented, evaluating thermodynamic data of the different reactions proposed in previous experimental studies. In addition, the structures, energetics and possible evolution of the key IOOO(-) intermediate are discussed for the first time.

3.
Faraday Discuss ; 165: 447-72, 2013.
Article in English | MEDLINE | ID: mdl-24601017

ABSTRACT

Recent laboratory and modelling studies have shown that reactive uptake of low molecular weight alpha-dicarbonyls such as glyoxal (GLY) by aerosols is a potentially significant source of secondary organic aerosol (SOA). However, previous studies disagree in the magnitude of the uptake of GLY, the mechanism involved and the physicochemical factors affecting particle formation. In this study, the chemistry of GLY with ammonium sulfate (AS) in both bulk laboratory solutions and in aerosol particles is investigated. For the first time, Aerosol Time of Flight Mass Spectrometry (ATOFMS), a single particle technique, is used together with offline (ESI-MS and LC-MS2) mass spectrometric techniques to investigate the change in composition of bulk solutions of GLY and AS resulting from aqueous photooxidation by OH and from ageing of the solutions in the dark. The mass spectral ions obtained in these laboratory studies were used as tracers of GLY uptake and chemistry in AS seed particles in a series of experiments carried out under dark and natural irradiated conditions at the outdoor European Photo-reactor (EUPHORE). Glyoxal oligomers formed were not detected by the ATOFMS, perhaps due to inefficient absorption at the laser wavelength. However, the presence of organic nitrogen compounds, formed by reaction of GLY with ammonia was confirmed, resulting in an increase in the absorption efficiency of the aerosol, and this increased the number of particles successfully ionised by the ATOFMS. A number of light absorbing organic nitrogen species, including 1H-imidazole, 1H-imidazole-2-carboxaldehyde, 2,2'-bis-imidazole and a glyoxal substituted 2,2'-bisimidazole, previously identified in aqueous laboratory solutions, were also identified in chamber aerosol and formed on atmospherically relevant timescales. An additional compound, predicted to be 1,2,5-oxadiazole, had an enhanced formation rate when the chamber was open and is predicted to be formed via a light activated pathway involving radical oxidation of ammonia to hydroxylamine, followed by subsequent reaction with glyoxal to form an intermediate glyoxime.


Subject(s)
Aerosols/chemistry , Ammonium Sulfate/chemistry , Glyoxal/chemistry , Mass Spectrometry/methods , Oxidation-Reduction
4.
J Phys Chem A ; 115(6): 1069-85, 2011 Feb 17.
Article in English | MEDLINE | ID: mdl-21235214

ABSTRACT

The acetyl + O(2) reaction has been studied by observing the time dependence of OH by laser-induced fluorescence (LIF) and by electronic structure/master equation analysis. The experimental OH time profiles were analyzed to obtain the kinetics of the acetyl + O(2) reaction and the relative OH yields over the temperature range of 213-500 K in helium at pressures in the range of 5-600 Torr. More limited measurements were made in N(2) and for CD(3)CO + O(2). The relative OH yields were converted into absolute yields by assuming that the OH yield at zero pressure is unity. Electronic structure calculations of the stationary points of the potential energy surface were used with a master equation analysis to fit the experimental data in He using the high-pressure limiting rate coefficient for the reaction, k(∞)(T), and the energy transfer parameter, (ΔE(d)), as variable parameters. The best-fit parameters obtained are k(∞) = 6.2 × 10(-12) cm(-3) molecule(-1) s(-1), independent of temperature over the experimental range, and (ΔE(d))(He) = 160(T/298 K) cm(-1). The fits in N(2), using the same k(∞)(T), gave (ΔE(d))(N(2)) = 270(T/298 K) cm(-1). The rate coefficients for formation of OH and CH(3)C(O)O(2) are provided in parametrized form, based on modified Troe expressions, from the best-fit master equation calculations, over the pressure and temperature ranges of 1 ≤ p/Torr ≤ 1.5 × 10(5) and 200 ≤ T/K ≤ 1000 for He and N(2) as the bath gas. The minor channels, leading to HO(2) + CH(2)CO and CH(2)C(O)OOH, generally have yields <1% over this range.

5.
Phys Chem Chem Phys ; 9(31): 4114-28, 2007 Aug 21.
Article in English | MEDLINE | ID: mdl-17687462

ABSTRACT

Experimental studies have been conducted to determine the rate coefficient and mechanism of the reaction between methylglyoxal (CH(3)COCHO, MGLY) and the OH radical over a wide range of temperatures (233-500 K) and pressures (5-300 Torr). The rate coefficient is pressure independent with the following temperature dependence: k(3)(T) = (1.83 +/- 0.48) x 10(-12) exp((560 +/- 70)/T) cm(3) molecule(-1) s(-1) (95% uncertainties). Addition of O(2) to the system leads to recycling of OH. The mechanism was investigated by varying the experimental conditions ([O(2)], [MGLY], temperature and pressure), and by modelling based on a G3X potential energy surface, rovibrational prior distribution calculations and master equation RRKM calculations. The mechanism can be described as follows: Addition of oxygen to the system shows that process (4) is fast and that CH(3)COCO completely dissociates. The acetyl radical formed from reaction (4) reacts with oxygen to regenerate OH radicals (5a). However, a significant fraction of acetyl radical formed by reaction (R4) is sufficiently energised to dissociate further to CH(3) + CO (R4b). Little or no pressure quenching of reaction (R4b) was observed. The rate coefficient for OD + MGLY was measured as k(9)(T) = (9.4 +/- 2.4) x 10(-13) exp((780 +/- 70)/T) cm(3) molecule(-1) s(-1) over the temperature range 233-500 K. The reaction shows a noticeable inverse (k(H)/k(D) < 1) kinetic isotope effect below room temperature and a slight normal kinetic isotope effect (k(H)/k(D) > 1) at high temperature. The potential atmospheric implications of this work are discussed.


Subject(s)
Chemistry, Physical/methods , Deuterium/chemistry , Hydroxyl Radical , Pyruvaldehyde/chemistry , Chemistry/methods , Electrochemistry/methods , Free Radicals , Kinetics , Lasers , Models, Chemical , Models, Statistical , Oxygen/chemistry , Pressure , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...