Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 4(4): 102618, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37756154

ABSTRACT

The mammalian suprachiasmatic nucleus (SCN) is the principal circadian clock that synchronizes daily behavioral and physiological responses in response to environmental cues. Here, we present a protocol for harvesting mouse SCN by vibrating microtome for diurnal transcriptome analysis. We describe steps for mouse entrainment, isolation of the SCN, tissue preparation, slicing with a vibratome, and handling of the harvested SCN for RNA extraction. This protocol can also be used for harvesting other mammalian brain regions for genomic studies.


Subject(s)
Circadian Clocks , Circadian Rhythm , Mice , Animals , Circadian Rhythm/genetics , Suprachiasmatic Nucleus/physiology , Gene Expression Profiling , Histological Techniques , Mammals
2.
Genome Res ; 33(5): 673-688, 2023 May.
Article in English | MEDLINE | ID: mdl-37156620

ABSTRACT

The mammalian suprachiasmatic nucleus (SCN), located in the ventral hypothalamus, synchronizes and maintains daily cellular and physiological rhythms across the body, in accordance with environmental and visceral cues. Consequently, the systematic regulation of spatiotemporal gene transcription in the SCN is vital for daily timekeeping. So far, the regulatory elements assisting circadian gene transcription have only been studied in peripheral tissues, lacking the critical neuronal dimension intrinsic to the role of the SCN as central brain pacemaker. By using histone-ChIP-seq, we identified SCN-enriched gene regulatory elements that associated with temporal gene expression. Based on tissue-specific H3K27ac and H3K4me3 marks, we successfully produced the first-ever SCN gene-regulatory map. We found that a large majority of SCN enhancers not only show robust 24-h rhythmic modulation in H3K27ac occupancy, peaking at distinct times of day, but also possess canonical E-box (CACGTG) motifs potentially influencing downstream cycling gene expression. To establish enhancer-gene relationships in the SCN, we conducted directional RNA-seq at six distinct times across the day and night, and studied the association between dynamically changing histone acetylation and gene transcript levels. About 35% of the cycling H3K27ac sites were found adjacent to rhythmic gene transcripts, often preceding the rise in mRNA levels. We also noted that enhancers encompass noncoding, actively transcribing enhancer RNAs (eRNAs) in the SCN, which in turn oscillate, along with cyclic histone acetylation, and correlate with rhythmic gene transcription. Taken together, these findings shed light on genome-wide pretranscriptional regulation operative in the central clock that confers its precise and robust oscillation necessary to orchestrate daily timekeeping in mammals.


Subject(s)
Circadian Clocks , Animals , Circadian Clocks/genetics , Histones/genetics , Histones/metabolism , Circadian Rhythm/genetics , Suprachiasmatic Nucleus/metabolism , Mammals/genetics , Genomics , Enhancer Elements, Genetic
3.
Nucleic Acids Res ; 45(11): 6459-6470, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28407113

ABSTRACT

Circadian clocks are autonomous daily timekeeping mechanisms that allow organisms to adapt to environmental rhythms as well as temporally organize biological functions. Clock-controlled timekeeping involves extensive regulation of rhythmic gene expression. To date, relatively few clock-associated promoter elements have been identified and characterized. In an unbiased search of core clock gene promoters from 12 species of Drosophila, we discovered a 29-bp consensus sequence that we designated as the Clock-Associated Transcriptional Activation Cassette or 'CATAC'. To experimentally address the spatiotemporal expression information associated with this element, we generated constructs with four separate native CATAC elements upstream of a basal promoter driving expression of either the yeast Gal4 or firefly luciferase reporter genes. Reporter assays showed that presence of wild-type, but not mutated CATAC elements, imparted increased expression levels as well as rhythmic regulation. Part of the CATAC consensus sequence resembles the E-box binding site for the core circadian transcription factor CLOCK/CYCLE (CLK/CYC), and CATAC-mediated expression rhythms are lost in the presence of null mutations in either cyc or the gene encoding the CLK/CYC inhibitor, period (per). Nevertheless, our results indicate that CATAC's enhancer function persists in the absence of CLK/CYC. Thus, CATAC represents a novel cis-regulatory element encoding clock-controlled regulation.


Subject(s)
Drosophila melanogaster/genetics , Promoter Regions, Genetic , ARNTL Transcription Factors/physiology , Animals , Base Sequence , CLOCK Proteins/physiology , Circadian Rhythm , Consensus Sequence , Drosophila Proteins/physiology , Drosophila melanogaster/metabolism , Gene Expression , Gene Expression Regulation , Genes, Reporter , Male , Sequence Analysis, DNA
4.
Genome Res ; 26(2): 203-10, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26672019

ABSTRACT

Many organisms monitor the annual change in day length and use this information for the timing of their seasonal response. However, the molecular mechanisms underlying photoperiodic timing are largely unknown. The wasp Nasonia vitripennis is an emerging model organism that exhibits a strong photoperiodic response: Short autumnal days experienced by females lead to the induction of developmental arrest (diapause) in their progeny, allowing winter survival of the larvae. How female Nasonia control the developmental trajectory of their offspring is unclear. Here, we took advantage of the recent discovery that DNA methylation is pervasive in Nasonia and tested its role in photoperiodism. We used reduced representation bisulfite sequencing (RRBS) to profile DNA methylation in adult female wasps subjected to different photoperiods and identified substantial differential methylation at the single base level. We also show that knocking down DNA methyltransferase 1a (Dnmt1a), Dnmt3, or blocking DNA methylation pharmacologically, largely disrupts the photoperiodic diapause response of the wasps. To our knowledge, this is the first example for a role of DNA methylation in insect photoperiodic timing.


Subject(s)
DNA Methylation , Wasps/genetics , Animals , CpG Islands , Epigenesis, Genetic , Female , Genes, Insect , Larva/genetics , Larva/metabolism , Photoperiod , Seasons , Sequence Analysis, DNA , Wasps/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...