Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(1): e2305937, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37689973

ABSTRACT

Oral delivery, while a highly desirable form of nanoparticle-drug administration, is limited by challenges associated with overcoming several biological barriers. Here, the authors study how fluorescent and poly(ethylene glycol)-coated (PEGylated) core-shell silica nanoparticles sized 5 to 50 nm interact with major barriers including intestinal mucus, intestinal epithelium, and stomach acid. From imaging fluorescence correlation spectroscopy studies using quasi-total internal reflection fluorescence microscopy, diffusion of nanoparticles through highly scattering mucus is progressively hindered above a critical hydrodynamic size around 20 nm. By studying Caco-2 cell monolayers mimicking the intestinal epithelia, it is observed that ultrasmall nanoparticles below 10 nm diameter (Cornell prime dots, [C' dots]) show permeabilities correlated with high absorption in humans from primarily enhanced passive passage through tight junctions. Particles above 20 nm diameter exclusively show active transport through cells. After establishing C' dot stability in artificial gastric juice, in vivo oral gavage experiments in mice demonstrate successful passage through the body followed by renal clearance without protein corona formation. Results suggest C' dots as viable candidates for oral administration to patients with a proven pathway towards clinical translation and may generate renewed interest in examining silica as a food additive and its effects on nutrition and health.


Subject(s)
Drug Carriers , Nanoparticles , Humans , Rats , Mice , Animals , Drug Carriers/chemistry , Caco-2 Cells , Rats, Sprague-Dawley , Silicon Dioxide/chemistry , Nanoparticles/chemistry
2.
Biophys J ; 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37533258

ABSTRACT

Interleaflet coupling-the influence of one leaflet on the properties of the opposing leaflet-is a fundamental plasma membrane organizational principle. This coupling is proposed to participate in maintaining steady-state biophysical properties of the plasma membrane, which in turn regulates some transmembrane signaling processes. A prominent example is antigen (Ag) stimulation of signaling by clustering transmembrane receptors for immunoglobulin E (IgE), FcεRI. This transmembrane signaling depends on the stabilization of ordered regions in the inner leaflet for sorting of intracellular signaling components. The resting inner leaflet has a lipid composition that is generally less ordered than the outer leaflet and that does not spontaneously phase separate in model membranes. We propose that interleaflet coupling can mediate ordering and disordering of the inner leaflet, which is poised in resting cells to reorganize upon stimulation. To test this in live cells, we first established a straightforward approach to evaluate induced changes in membrane order by measuring inner leaflet diffusion of lipid probes by imaging fluorescence correlation spectroscopy, by imaging fluorescence correlation spectroscopy (ImFCS), before and after methyl-α-cyclodexrin (mαCD)-catalyzed exchange of outer leaflet lipids (LEX) with exogenous order- or disorder-promoting phospholipids. We examined the functional impact of LEX by monitoring two Ag-stimulated responses: recruitment of cytoplasmic Syk kinase to the inner leaflet and exocytosis of secretory granules (degranulation). Based on the ImFCS data in resting cells, we observed global increase or decrease of inner leaflet order when outer leaflet is exchanged with order- or disorder-promoting lipids, respectively. We find that the degree of both stimulated Syk recruitment and degranulation correlates positively with LEX-mediated changes of inner leaflet order in resting cells. Overall, our results show that resting-state lipid ordering of the outer leaflet influences the ordering of the inner leaflet, likely via interleaflet coupling. This imposed lipid reorganization modulates transmembrane signaling stimulated by Ag clustering of IgE-FcεRI.

3.
J Phys Chem B ; 126(12): 2325-2336, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35294838

ABSTRACT

Plasma membranes host numerous receptors, sensors, and ion channels involved in cellular signaling. Phase separation within the plasma membrane has emerged as a key biophysical regulator of signaling reactions in multiple physiological and pathological contexts. There is much evidence that plasma membrane composition supports the coexistence of liquid-ordered (Lo) and liquid-disordered (Ld) phases or domains at physiological conditions. However, this phase/domain separation is nanoscopic and transient in live cells. It has been recently proposed that transbilayer coupling between the inner and outer leaflets of the plasma membrane is driven by their asymmetric lipid distribution and by dynamic cytoskeleton-lipid composites that contribute to the formation and transience of Lo/Ld phase separation in live cells. In this Perspective, we highlight new approaches to investigate how transbilayer coupling may influence phase separation. For quantitative evaluation of the impact of these interactions, we introduce an experimental strategy centered around Imaging Fluorescence Correlation Spectroscopy (ImFCS), which measures membrane diffusion with very high precision. To demonstrate this strategy, we choose two well-established model systems for transbilayer interactions: cross-linking by multivalent antigen of immunoglobulin E bound to receptor FcεRI and cross-linking by cholera toxin B of GM1 gangliosides. We discuss emerging methods to systematically perturb membrane lipid composition, particularly exchange of outer leaflet lipids with exogenous lipids using methyl alpha cyclodextrin. These selective perturbations may be quantitatively evaluated with ImFCS and other high-resolution biophysical tools to discover novel principles of lipid-mediated phase separation in live cells in the context of their pathophysiological relevance.


Subject(s)
Membrane Lipids , Cell Membrane/chemistry , Diffusion , Membrane Lipids/metabolism , Spectrometry, Fluorescence
4.
J Cell Sci ; 135(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-34569608

ABSTRACT

Phosphatidylinositol 4-kinase IIIα (PI4KIIIα) is the major enzyme responsible for generating phosphatidylinositol (4)-phosphate [PI(4)P] at the plasma membrane. This lipid kinase forms two multicomponent complexes, both including a palmitoylated anchor, EFR3. Whereas both PI4KIIIα complexes support production of PI(4)P, the distinct functions of each complex and mechanisms underlying the interplay between them remain unknown. Here, we present roles for differential palmitoylation patterns within a tri-cysteine motif in EFR3B (Cys5, Cys7 and Cys8) in controlling the distribution of PI4KIIIα between these two complexes at the plasma membrane and corresponding functions in phosphoinositide homeostasis. Spacing of palmitoyl groups within three doubly palmitoylated EFR3B 'lipoforms' affects both interactions between EFR3B and TMEM150A, a transmembrane protein governing formation of a PI4KIIIα complex functioning in rapid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] resynthesis following phospholipase C signaling, and EFR3B partitioning within liquid-ordered and -disordered regions of the plasma membrane. This work identifies a palmitoylation code involved in controlling protein-protein and protein-lipid interactions that affect a plasma membrane-resident lipid biosynthetic pathway.


Subject(s)
Lipoylation , Phosphatidylinositols , Cell Membrane/metabolism , Homeostasis , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositols/metabolism
5.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34433665

ABSTRACT

Antigen (Ag) crosslinking of immunoglobulin E-receptor (IgE-FcεRI) complexes in mast cells stimulates transmembrane (TM) signaling, requiring phosphorylation of the clustered FcεRI by lipid-anchored Lyn tyrosine kinase. Previous studies showed that this stimulated coupling between Lyn and FcεRI occurs in liquid ordered (Lo)-like nanodomains of the plasma membrane and that Lyn binds directly to cytosolic segments of FcεRI that it initially phosphorylates for amplified activity. Net phosphorylation above a nonfunctional threshold is achieved in the stimulated state but not in the resting state, and current evidence supports the hypothesis that this relies on Ag crosslinking to disrupt a balance between Lyn and tyrosine phosphatase activities. However, the structural interactions that underlie the stimulation process remain poorly defined. This study evaluates the relative contributions and functional importance of different types of interactions leading to suprathreshold phosphorylation of Ag-crosslinked IgE-FcεRI in live rat basophilic leukemia mast cells. Our high-precision diffusion measurements by imaging fluorescence correlation spectroscopy on multiple structural variants of Lyn and other lipid-anchored probes confirm subtle, stimulated stabilization of the Lo-like nanodomains in the membrane inner leaflet and concomitant sharpening of segregation from liquid disordered (Ld)-like regions. With other structural variants, we determine that lipid-based interactions are essential for access by Lyn, leading to phosphorylation of and protein-based binding to clustered FcεRI. By contrast, TM tyrosine phosphatase, PTPα, is excluded from these regions due to its Ld-preference and steric exclusion of TM segments. Overall, we establish a synergy of lipid-based, protein-based, and steric interactions underlying functional TM signaling in mast cells.


Subject(s)
Antigens/metabolism , Cell Membrane/metabolism , Lipids/physiology , Mast Cells/metabolism , Receptors, IgE/metabolism , Signal Transduction , Animals , Antigens/immunology , CHO Cells , Cell Line, Tumor , Cells, Cultured , Cricetulus , Green Fluorescent Proteins/metabolism , Lipid Metabolism , Mast Cells/immunology , Nanostructures , Rats , src-Family Kinases/metabolism
6.
Adv Mater ; 33(8): e2006829, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33470471

ABSTRACT

Stochastic optical reconstruction microscopy (STORM) is an optical super-resolution microscopy (SRM) technique that traditionally requires toxic and non-physiological imaging buffers and setups that are not conducive to live-cell studies. It is observed that ultrasmall (<10 nm) fluorescent core-shell aluminosilicate nanoparticles (aC' dots) covalently encapsulating organic fluorophores enable STORM with a single excitation source and in a regular (non-toxic) imaging buffer. It is shown that fourfold coordinated aluminum is responsible for dye blinking, likely via photoinduced redox processes. It is demonstrated that this phenomenon is observed across different dye families leading to probes brighter and more photostable than the parent free dyes. Functionalization of aC' dots with antibodies allows targeted fixed cell STORM imaging. Finally, aC' dots enable live-cell STORM imaging providing quantitative measures of the size of intracellular vesicles and the number of particles per vesicle. The results suggest the emergence of a powerful ultrasmall, bright, and photostable optical SRM particle platform with characteristics relevant to clinical translation for the quantitative assessment of cellular structures and processes from live-cell imaging.


Subject(s)
Aluminum Silicates/chemistry , Microscopy, Fluorescence/methods , Nanoparticles , Particle Size , Cell Line , Cell Survival , Humans , Image Processing, Computer-Assisted
8.
Mol Biol Cell ; 31(7): 709-723, 2020 03 19.
Article in English | MEDLINE | ID: mdl-31895009

ABSTRACT

A myriad of transient, nanoscopic lipid- and protein-based interactions confer a steady-state organization of the plasma membrane in resting cells that is poised to orchestrate assembly of key signaling components upon reception of an extracellular stimulus. Although difficult to observe directly in live cells, these subtle interactions can be discerned by their impact on the diffusion of membrane constituents. Here, we quantified the diffusion properties of a panel of structurally distinct lipid, lipid-anchored, and transmembrane (TM) probes in RBL mast cells by imaging fluorescence correlation spectroscopy (ImFCS). We developed a statistical analysis of data combined from many pixels over multiple cells to characterize differences in diffusion coefficients as small as 10%, which reflect differences in underlying interactions. We found that the distinctive diffusion properties of lipid probes can be explained by their dynamic partitioning into Lo-like proteolipid nanodomains, which encompass a major fraction of the membrane and whose physical properties are influenced by actin polymerization. Effects on diffusion of functional protein modules in both lipid--anchored and TM probes reflect additional complexity in steady state membrane organization. The contrast we observe between different probes diffusing through the same membrane milieu represents the dynamic resting steady state, which serves as a baseline for monitoring plasma membrane remodeling that occurs upon stimulation.


Subject(s)
Cell Membrane/metabolism , Mast Cells/metabolism , Spectrometry, Fluorescence , Actins/metabolism , Animals , Cell Line , Diffusion , Green Fluorescent Proteins/metabolism , Imaging, Three-Dimensional , Immunoglobulin E/metabolism , Lipids/chemistry , Polymerization , Rats , Receptors, IgE/metabolism
9.
J Chem Theory Comput ; 14(7): 3920-3932, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29874075

ABSTRACT

During host cell infection by flaviviruses such as dengue and Zika, acidic pH within the endosome triggers a conformational change in the envelope protein on the outer surface of the virion. This results in exposure of the ∼15 residue fusion peptide (FP) region, freeing it to induce fusion between the viral and endosomal membranes. A better understanding of the conformational dynamics of the FP in the presence of membranes, and the basis for its selectivity for anionic lipid species present within the endosome, would facilitate its therapeutic targeting with antiviral drugs and antibodies. In this work, multiscale modeling, simulations, and free energy calculations (including a total of ∼75 µs of atomic-resolution sampling), combined with imaging total internal reflection fluorescence correlation spectroscopy experiments, were employed to investigate the mechanisms of interaction of FP variants with lipid bilayers. Wild-type FPs (in the presence or absence of a fluorescein isothiocyanate tag) were shown to possess a funneled conformational landscape governing their exit from solvent and penetration into the lipid phase and to exhibit an electrostatically favored >2-fold affinity for membranes containing anionic species over purely zwitterionic ones. Conversely, the landscape was abolished in a nonfunctional point mutant, leading to a 2-fold drop in host membrane affinity. Collectively, our data reveal how the highly conserved flavivirus FP has evolved to funnel its conformational space toward a maximally fusogenic state anchored within the endosomal membrane. Therapeutically targeting the accessible ensemble of FP conformations may represent a new, rational strategy for blocking viral infection.


Subject(s)
Flavivirus Infections/metabolism , Flavivirus/physiology , Membrane Lipids/metabolism , Viral Fusion Proteins/metabolism , Virus Internalization , Amino Acid Sequence , Flavivirus/chemistry , Flavivirus Infections/virology , Host-Pathogen Interactions , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Lipids/chemistry , Protein Conformation , Thermodynamics , Viral Fusion Proteins/chemistry
10.
Nat Commun ; 8: 14339, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28186093

ABSTRACT

Dengue virus serotype 2 (DENV2) alone undergoes structural expansion at 37 °C (associated with host entry), despite high sequence and structural homology among the four known serotypes. The basis for this differential expansion across strains and serotypes is unknown and necessitates mapping of the dynamics of dengue whole viral particles to describe their coordinated motions and conformational changes when exposed to host-like environments. Here we capture the dynamics of intact viral particles of two serotypes, DENV1 and DENV2, by amide hydrogen/deuterium exchange mass spectrometry (HDXMS) and time resolved Förster Resonance Energy Transfer. Our results show temperature-dependent dynamics hotspots on DENV2 and DENV1 particles with DENV1 showing expansion at 40 °C but not at 37 °C. HDXMS measurement of virion dynamics in solution offers a powerful approach to identify potential epitopes, map virus-antibody complex structure and dynamics, and test effects of multiple host-specific perturbations on viruses and virus-antibody complexes.


Subject(s)
Dengue Virus/chemistry , Molecular Conformation , Temperature , Virion/chemistry , Amino Acid Sequence , Antibodies, Viral/immunology , Dengue/virology , Dengue Virus/genetics , Dengue Virus/physiology , Deuterium Exchange Measurement , Host-Pathogen Interactions , Humans , Models, Molecular , Protein Conformation , Serogroup , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , Virion/genetics , Virion/physiology
11.
Biochim Biophys Acta Biomembr ; 1859(9 Pt A): 1483-1492, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27998689

ABSTRACT

The action and interaction of membrane receptor proteins take place within the plasma membrane. The plasma membrane, however, is not a passive matrix. It rather takes an active role and regulates receptor distribution and function by its composition and the interaction of its lipid components with embedded and surrounding proteins. Furthermore, it is not a homogenous fluid but contains lipid and protein domains of various sizes and characteristic lifetimes which are important in regulating receptor function and signaling. The precise lateral organization of the plasma membrane, the differences between the inner and outer leaflet, and the influence of the cytoskeleton are still debated. Furthermore, there is a lack of comparisons of the organization and dynamics of the plasma membrane of different cell types. Therefore, we used four different specific membrane markers to test the lateral organization, the differences between the inner and outer membrane leaflet, and the influence of the cytoskeleton of up to five different cell lines, including Chinese hamster ovary (CHO-K1), Human cervical carcinoma (HeLa), neuroblastoma (SH-SY5Y), fibroblast (WI-38) and rat basophilic leukemia (RBL-2H3) cells by Imaging Total Internal Reflection (ITIR)-Fluorescence Correlation Spectroscopy (FCS). We measure diffusion in the temperature range of 298-310K to measure the Arrhenius activation energy (EArr) of diffusion and apply the FCS diffusion law to obtain information on the spatial organization of the probe molecules on the various cell membranes. Our results show clear differences of the FCS diffusion law and EArr for the different probes in dependence of their localization. These differences are similar in the outer and inner leaflet of the membrane. However, these values can differ significantly between different cell lines raising the question how molecular plasma membrane events measured in different cell lines can be compared. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.


Subject(s)
Cell Membrane/metabolism , Cytoskeleton/metabolism , Lipid Bilayers/metabolism , Membrane Microdomains/metabolism , Animals , CHO Cells , Cell Membrane/genetics , Cricetinae , Cricetulus , Cytoskeleton/genetics , Fibroblasts/metabolism , HeLa Cells , Humans , Lipid Bilayers/chemistry , Membrane Microdomains/genetics , Rats , Spectrometry, Fluorescence
12.
Methods Appl Fluoresc ; 4(3): 034003, 2016 07 26.
Article in English | MEDLINE | ID: mdl-28355150

ABSTRACT

Imaging fluorescence correlation spectroscopy (FCS) and the related FCS diffusion law have been applied in recent years to investigate the diffusion modes of lipids and proteins in membranes. These efforts have provided new insights into the membrane structure below the optical diffraction limit, new information on the existence of lipid domains, and on the influence of the cytoskeleton on membrane dynamics. However, there has been no systematic study to evaluate how domain size, domain density, and the probe partition coefficient affect the resulting imaging FCS diffusion law parameters. Here, we characterize the effects of these factors on the FCS diffusion law through simulations and experiments on lipid bilayers and live cells. By segmenting images into smaller 7 × 7 pixel areas, we can evaluate the FCS diffusion law on areas smaller than 2 µm and thus provide detailed maps of information on the membrane structure and heterogeneity at this length scale. We support and extend this analysis by deriving a mathematical expression to calculate the mean squared displacement (MSDACF) from the autocorrelation function of imaging FCS, and demonstrate that the MSDACF plots depend on the existence of nanoscopic domains. Based on the results, we derive limits for the detection of domains depending on their size, density, and relative viscosity in comparison to the surroundings. Finally, we apply these measurements to bilayers and live cells using imaging total internal reflection FCS and single plane illumination microscopy FCS.


Subject(s)
Cell Membrane , Diffusion , Lipid Bilayers , Microscopy, Confocal , Microscopy, Fluorescence , Spectrometry, Fluorescence
13.
Biophys J ; 109(9): 1925-36, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26536269

ABSTRACT

The spatial arrangement of the epidermal growth factor receptor (EGFR) on the cellular plasma membrane is one of the prime factors that control its downstream signaling pathways and related functions. However, the molecular organization, which spans the scale from nanometers to micrometer-size clusters, has not been resolved in detail, mainly due to a lack of techniques with the required spatiotemporal resolution. Therefore, we used imaging total internal reflection-fluorescence correlation spectroscopy to investigate EGFR dynamics on live CHO-K1 plasma membranes in resting and ligand-bound states. In combination with the fluorescence correlation spectroscopy diffusion law, this provides information on the subresolution organization of EGFR on cell membranes. We found that overall EGFR organization is sensitive to both cholesterol and the actin cytoskeleton. EGFR in the resting state is partly trapped in cholesterol-containing domains, whereas another fraction exhibits cholesterol independent trapping on the membrane. Disruption of the cytoskeleton leads to a broader range of EGFR diffusion coefficients and a reduction of hop diffusion. In the ligand-bound state we found a dose-dependent behavior. At 10 ng/mL EGF the EGFR is endocytosed and recycled to the membrane, whereas diffusion and organization do not change significantly. At 100 ng/mL EGF the EGFR forms clusters, which are subsequently internalized, whereas outside the clusters diffusivity increases and the organization of the receptor remains unchanged. After disruption of cholesterol-containing domains or actin cytoskeleton, EGF induces microscopic EGFR clusters on the membrane and endocytosis is inhibited.


Subject(s)
Cell Membrane/metabolism , ErbB Receptors/metabolism , Actin Cytoskeleton/metabolism , Animals , CHO Cells , Cholesterol/metabolism , Cricetulus , Diffusion , Endocytosis/physiology , Humans , Jurkat Cells , Lipid Bilayers/chemistry , Protein Binding
14.
Nat Protoc ; 10(12): 1948-74, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26540588

ABSTRACT

Single-plane illumination (SPIM) or total internal reflection fluorescence (TIRF) microscopes can be combined with fast and single-molecule-sensitive cameras to allow spatially resolved fluorescence (cross-) correlation spectroscopy (FCS or FCCS, hereafter referred to FCS/FCCS). This creates a powerful quantitative bioimaging tool that can generate spatially resolved mobility and interaction maps with hundreds to thousands of pixels per sample. These massively parallel imaging schemes also cause less photodamage than conventional single-point confocal microscopy-based FCS/FCCS. Here we provide guidelines for imaging FCS/FCCS measurements on commercial and custom-built microscopes (including sample preparation, setup calibration, data acquisition and evaluation), as well as anticipated results for a variety of in vitro and in vivo samples. For a skilled user of an available SPIM or TIRF setup, sample preparation, microscope alignment, data acquisition and data fitting, as described in this protocol, will take ∼1 d, depending on the sample and the mode of imaging.


Subject(s)
Optical Imaging/instrumentation , Spectrometry, Fluorescence/instrumentation , Algorithms , Animals , Cell Survival , Drosophila/embryology , Equipment Design , Optical Imaging/methods , Software , Spectrometry, Fluorescence/methods , Zebrafish/embryology
15.
Chimia (Aarau) ; 69(3): 112-9, 2015.
Article in English | MEDLINE | ID: mdl-26507213

ABSTRACT

The plasma membrane organization of live cells defines a plethora of cellular processes important for cell functionality. Many membrane structures that define this organization exist at a spatial resolution below the optical diffraction limit and are highly dynamic. Therefore, a method with millisecond time resolution and nanometer spatial resolution is required for the investigation of plasma membrane organization. However, spatial and temporal resolutions of the currently available biophysical techniques are often mutually exclusive. In a novel realization, Lenne and coworkers developed a spot-variation modality of fluorescence correlation spectroscopy (FCS), also known as FCS diffusion law, to harvest nanoscopic information from microscopic measurements. The FCS diffusion law, so far, has been instrumental to decode the physico-chemical origin of membrane organization and its relationship with biological processes. Overall, the structural information of plasma membrane obtained by FCS diffusion law provides a better understanding of its coupling to the underlying cellular processes.


Subject(s)
Lipid Bilayers/chemistry , Membrane Microdomains/chemistry , Animals , Diffusion , Humans , Spectrometry, Fluorescence/methods
16.
Biochim Biophys Acta ; 1838(3): 802-13, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24600711

ABSTRACT

The organization of the plasma membrane is regulated by the dynamic equilibrium between the liquid ordered(Lo) and liquid disordered (Ld) phases. The abundance of the Lo phase is assumed to be a consequence of the interaction between cholesterol and the other lipids, which are otherwise in either the Ld or gel (So) phase.The characteristic lipid packing in these phases results in significant differences in their respective lateral dynamics.In this study, imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS) is applied to monitor the diffusion within supported lipid bilayers (SLBs) as functions of temperature and composition. We show that the temperature dependence of membrane lateral diffusion,which is parameterized by the Arrhenius activation energy (EArr), can resolve the sub-resolution phase behavior of lipid mixtures. The FCS diffusion law, a novel membrane heterogeneity ruler implemented in ITIR-FCS, is applied to show that the domains in the So­Ldphase are static and large while they are small and dynamic in the Lo­Ld phase. Diffusion measurements and the subsequent FCS diffusion law analyses at different temperatures show that the modulation in membrane dynamics at high temperature (313 K) is a cumulative effect of domain melting and rigidity relaxation. Finally, we extend these studies to the plasma membranes of commonly used neuroblastoma, HeLa and fibroblast cells.The temperature dependence of membrane dynamics for neuroblastoma cells is significantly different from that of HeLa or fibroblast cells as the different cell types exhibit a high level of compositional heterogeneity.


Subject(s)
Cell Membrane/metabolism , Lipid Bilayers/metabolism , Membrane Lipids/metabolism , Models, Theoretical , Spectrometry, Fluorescence , Cells, Cultured , Diffusion , Fibroblasts/metabolism , HeLa Cells , Humans , Neuroblastoma/metabolism , Temperature
17.
Biophys J ; 106(1): 190-200, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24411251

ABSTRACT

Amyloid fibril deposition of human islet amyloid polypeptide (hIAPP) in pancreatic islet cells is implicated in the pathogenesis of type II diabetes. A growing number of studies suggest that small peptide aggregates are cytotoxic via their interaction with the plasma membrane, which leads to membrane permeabilization or disruption. A recent study using imaging total internal reflection-fluorescence correlation spectroscopy (ITIR-FCS) showed that monomeric hIAPP induced the formation of cellular plasma membrane microdomains containing dense lipids, in addition to the modulation of membrane fluidity. However, the spatial organization of microdomains and their temporal evolution were only partially characterized due to limitations in the conventional analysis and interpretation of imaging FCS datasets. Here, we apply a previously developed Bayesian analysis procedure to ITIR-FCS data to resolve hIAPP-induced microdomain spatial organization and temporal dynamics. Our analysis enables the visualization of the temporal evolution of multiple diffusing species in the spatially heterogeneous cell membrane, lending support to the carpet model for the association mode of hIAPP aggregates with the plasma membrane. The presented Bayesian analysis procedure provides an automated and general approach to unbiased model-based interpretation of imaging FCS data, with broad applicability to resolving the heterogeneous spatial-temporal organization of biological membrane systems.


Subject(s)
Islet Amyloid Polypeptide/metabolism , Membrane Microdomains/ultrastructure , Bayes Theorem , Cell Line, Tumor , Humans , Membrane Microdomains/metabolism , Microscopy, Fluorescence , Models, Biological , Spectrometry, Fluorescence
18.
Annu Rev Phys Chem ; 65: 225-48, 2014.
Article in English | MEDLINE | ID: mdl-24328446

ABSTRACT

Fluorescence fluctuation spectroscopy (FFS) techniques provide information at the single-molecule level with excellent time resolution. Usually applied at a single spot in a sample, they have been recently extended into imaging formats, referred to as imaging FFS. They provide spatial information at the optical diffraction limit and temporal information in the microsecond to millisecond range. This review provides an overview of the different modalities in which imaging FFS techniques have been implemented and discusses present imaging FFS capabilities and limitations. A combination of imaging FFS and nanoscopy would allow one to record information with the detailed spatial information of nanoscopy, which is ∼20 nm and limited only by fluorophore size and labeling density, and the time resolution of imaging FFS, limited by the fluorescence lifetime. This combination would provide new insights into biological events by providing spatiotemporal resolution at unprecedented levels.


Subject(s)
Optical Imaging/methods , Spectrometry, Fluorescence/methods , Animals , Humans , Image Processing, Computer-Assisted/instrumentation , Image Processing, Computer-Assisted/methods , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Optical Imaging/instrumentation , Spectrometry, Fluorescence/instrumentation
19.
Chem Commun (Camb) ; 49(80): 9155-7, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-23986270

ABSTRACT

Monomeric hIAPP significantly destabilizes both model and live cell membranes by increasing membrane fluidity. This interaction with membranes happens via carpet formation followed by lipid extraction in a concentration dependent manner and thus we propose that hIAPP aggregation prior to membrane interaction may not be necessary for its cytotoxicity.


Subject(s)
Cell Membrane/metabolism , Islet Amyloid Polypeptide/metabolism , Lipid Bilayers/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Membrane/chemistry , Circular Dichroism , Humans , Islet Amyloid Polypeptide/chemistry , Islet Amyloid Polypeptide/toxicity , Lipid Bilayers/chemistry , Membrane Fluidity , Microscopy, Fluorescence , Monte Carlo Method , Protein Structure, Secondary , Rhodamines/chemistry
20.
Anal Chem ; 85(8): 3948-54, 2013 Apr 16.
Article in English | MEDLINE | ID: mdl-23521662

ABSTRACT

Imaging fluorescence correlation spectroscopy (FCS) performed using array detectors has been successfully used to quantify the number, mobility, and organization of biomolecules in cells and organisms. However, there have not been any systematic studies on the errors in these estimates that are introduced due to instrumental and experimental factors. State-of-the-art array detectors are still restricted in the number of frames that can be recorded per unit time, sensitivity and noise characteristics, and the total number of frames that can be realistically recorded. These limitations place constraints on the time resolution, the signal-to-noise ratio, and the total measurement time, respectively. This work addresses these problems by using a combination of simulations and experiments on lipid bilayers to provide characteristic performance parameters and guidelines that govern accuracy and precision of diffusion coefficient and concentration measurements in camera-based FCS. We then proceed to demonstrate the effects of these parameters on the capability of camera-based FCS to determine membrane heterogeneity via the FCS diffusion laws, showing that there is a lower length scale limit beyond which membrane organization cannot be detected and which can be overcome by choosing suitable experimental parameters. On the basis of these results, we provide guidelines for an efficient experimental design for camera-based FCS to extract information on mobility, concentration, and heterogeneity.


Subject(s)
Algorithms , Lipid Bilayers/chemistry , Spectrometry, Fluorescence/statistics & numerical data , Diffusion , Kinetics , Molecular Dynamics Simulation , Signal-To-Noise Ratio , Spectrometry, Fluorescence/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...