Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Aging Mech Dis ; 7(1): 20, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34471123

ABSTRACT

The rodents of hystricomorpha and sciuromorpha suborders exhibit remarkably lower incidence of cancer. The underlying genetic basis remains obscure. We report a convergent evolutionary split of human 3p21.31, a locus hosting a large number of tumour-suppressor genes (TSGs) and frequently deleted in several tumour types, in hystrico- and sciuromorphs. Analysis of 34 vertebrate genomes revealed that the synteny of 3p21.31 cluster is functionally and evolutionarily constrained in most placental mammals, but exhibit large genomic interruptions independently in hystricomorphs and sciuromorphs, owing to relaxation of underlying constraints. Hystrico- and sciuromorphs, therefore, escape from pro-tumorigenic co-deletion of several TSGs in cis. The split 3p21.31 sub-clusters gained proximity to proto-oncogene clusters from elsewhere, which might further nullify pro-tumorigenic impact of copy number variations due to co-deletion or co-amplification of genes with opposing effects. The split of 3p21.31 locus coincided with the accelerated rate of its gene expression and the body mass evolution of ancestral hystrico- and sciuromorphs. The genes near breakpoints were associated with the traits specific to hystrico- and sciuromorphs, implying adaptive significance. We conclude that the convergently evolved chromosomal interruptions of evolutionarily constrained 3p21.31 cluster might have impacted evolution of cancer resistance, body mass variation and ecological adaptations in hystrico- and sciuromorphs.

2.
Genetics ; 211(4): 1239-1254, 2019 04.
Article in English | MEDLINE | ID: mdl-30796012

ABSTRACT

Conserved noncoding elements (CNEs) have a significant regulatory influence on their neighboring genes. Loss of proximity to CNEs through genomic rearrangements can, therefore, impact the transcriptional states of the cognate genes. Yet, the evolutionary implications of such chromosomal alterations have not been studied. Through genome-wide analysis of CNEs and the cognate genes of representative species from five different mammalian orders, we observed a significant loss of genes' linear proximity to CNEs in the rat lineage. The CNEs and the genes losing proximity had a significant association with fetal, but not postnatal, brain development as assessed through ontology terms, developmental gene expression, chromatin marks, and genetic mutations. The loss of proximity to CNEs correlated with the independent evolutionary loss of fetus-specific upregulation of nearby genes in the rat brain. DNA breakpoints implicated in brain abnormalities of germline origin had significant representation between a CNE and the gene that exhibited loss of proximity, signifying the underlying developmental tolerance of genomic rearrangements that allowed the evolutionary splits of CNEs and the cognate genes in the rodent lineage. Our observations highlighted a nontrivial impact of chromosomal rearrangements in shaping the evolutionary dynamics of mammalian brain development and might explain the loss of brain traits, like cerebral folding of the cortex, in the rodent lineage.


Subject(s)
Brain/metabolism , Conserved Sequence , Evolution, Molecular , Gene Expression Regulation, Developmental , Regulatory Sequences, Nucleic Acid/genetics , Animals , Brain/embryology , Cattle , Dogs , Gene Rearrangement , Horses , Humans , Neurogenesis , Rats
3.
Genome Biol Evol ; 8(3): 946-54, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-26957031

ABSTRACT

In eukaryotes, genes are nonrandomly organized into short gene-dense regions or "gene-clusters" interspersed by long gene-poor regions. How these gene-clusters have evolved is not entirely clear. Gene duplication may not account for all the gene-clusters since the genes in most of the clusters do not exhibit significant sequence similarity. In this study, using genome-wide data sets from budding yeast, fruit-fly, and human, we show that: 1) long-range evolutionary repositioning of genes strongly associate with their spatial proximity in the nucleus; 2) presence of evolutionary DNA break-points at involved loci hints at their susceptibility to undergo long-range genomic rearrangements; and 3) correlated epigenetic and transcriptional states of engaged genes highlight the underlying evolutionary constraints. The significance of observation 1, 2, and 3 are particularly stronger for the instances of inferred evolutionary gain, as compared with loss, of linear gene-clustering. These observations suggest that the long-range genomic rearrangements guided through 3D genome organization might have contributed to the evolution of gene order. We further hypothesize that the evolution of linear gene-clusters in eukaryotic genomes might have been mediated through spatial interactions among distant loci in order to optimize co-ordinated regulation of genes. We model this hypothesis through a heuristic model of gene-order evolution.


Subject(s)
Eukaryota/genetics , Evolution, Molecular , Genome , Multigene Family/genetics , Gene Order/genetics , Genomics , Humans
4.
DNA Res ; 23(2): 155-69, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26932984

ABSTRACT

Despite recent advances, the underlying functional constraints that shape the three-dimensional organization of eukaryotic genome are not entirely clear. Through comprehensive multivariate analyses of genome-wide datasets, we show that cis and trans interactions in yeast genome have significantly distinct functional associations. In particular, (i) the trans interactions are constrained by coordinated replication and co-varying mutation rates of early replicating domains through interactions among early origins, while cis interactions are constrained by coordination of late replication through interactions among late origins; (ii)cis and trans interactions exhibit differential preference for nucleosome occupancy; (iii)cis interactions are also constrained by the essentiality and co-fitness of interacting genes. Essential gene clusters associate with high average interaction frequency, relatively short-range interactions of low variance, and exhibit less fluctuations in chromatin conformation, marking a physically restrained state of engaged loci that, we suggest, is important to mitigate the epigenetic errors by restricting the spatial mobility of loci. Indeed, the genes with lower expression noise associate with relatively short-range interactions of lower variance and exhibit relatively higher average interaction frequency, a property that is conserved across Escherichia coli,yeast, and mESCs. Altogether, our observations highlight the coordination of replication and the minimization of expression noise, not necessarily co-expression of genes, as potent evolutionary constraints shaping the spatial organization of yeast genome.


Subject(s)
Chromatin , DNA Replication , Genome, Fungal , Saccharomyces cerevisiae/genetics , Epigenesis, Genetic , Gene Expression Regulation, Fungal
SELECTION OF CITATIONS
SEARCH DETAIL
...