Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38675617

ABSTRACT

Nanoemulsions are gaining interest in a variety of products as a means of integrating easily degradable bioactive compounds, preserving them from oxidation, and increasing their bioavailability. However, preparing stable emulsion compositions with the desired characteristics is a difficult task. The aim of this study was to encapsulate the Tinospora cordifolia aqueous extract (TCAE) into a water in oil (W/O) nanoemulsion and identify its critical process and formulation variables, like oil (27-29.4 mL), the surfactant concentration (0.6-3 mL), and sonication amplitude (40% to 100%), using response surface methodology (RSM). The responses of this formulation were studied with an analysis of the particle size (PS), free fatty acids (FFAs), and encapsulation efficiency (EE). In between, we have studied a fishbone diagram that was used to measure risk and preliminary research. The optimized condition for the formation of a stable nanoemulsion using quality by design was surfactant (2.43 mL), oil concentration (27.61 mL), and sonication amplitude (88.6%), providing a PS of 171.62 nm, FFA content of 0.86 meq/kg oil and viscosity of 0.597 Pa.s for the blank sample compared to the enriched TCAE nanoemulsion with a PS of 243.60 nm, FFA content of 0.27 meq/kg oil and viscosity of 0.22 Pa.s. The EE increases with increasing concentrations of TCAE, from 56.88% to 85.45%. The RSM response demonstrated that both composition variables had a considerable impact on the properties of the W/O nanoemulsion. Furthermore, after the storage time, the enriched TCAE nanoemulsion showed better stability over the blank nanoemulsion, specially the FFAs, and the blank increased from 0.142 to 1.22 meq/kg oil, while TCAE showed 0.266 to 0.82 meq/kg.


Subject(s)
Emulsions , Particle Size , Plant Extracts , Tinospora , Water , Emulsions/chemistry , Plant Extracts/chemistry , Tinospora/chemistry , Water/chemistry , Sonication , Nanoparticles/chemistry , Oils/chemistry , Surface-Active Agents/chemistry
2.
Molecules ; 28(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894552

ABSTRACT

Natural products with curative properties are gaining immense popularity in scientific and food research, possessing no side effects in contrast to other drugs. Guduchi, or Tinospora cordifolia, belongs to the menispermaceae family of universal drugs used to treat various diseases in traditional Indian literature. It has received attention in recent decades because of its utilization in folklore medicine for treating several disorders. Lately, the findings of active phytoconstituents present in herbal plants and their pharmacological function in disease treatment and control have stimulated interest in plants around the world. Guduchi is ethnobotanically used for jaundice, diabetes, urinary problems, stomachaches, prolonged diarrhea, skin ailments, and dysentery. The treatment with Guduchi extracts was accredited to phytochemical constituents, which include glycosides, alkaloids, steroids, and diterpenoid lactones. This review places emphasis on providing in-depth information on the budding applications of herbal medicine in the advancement of functional foods and nutraceuticals to natural product researchers.


Subject(s)
Plants, Medicinal , Tinospora , Tinospora/chemistry , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Dietary Supplements
3.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36768993

ABSTRACT

The aim of this paper was to determine the effect of stabilized curcumin nanoemulsions (CUNE) as a food additive capable of directionally acting to inhibit molecules involved in dairy products' quality and digestibility, especially cheese. The objects were cheeses made from the milk of higher grades with addition of a CUNE and a control sample. The cheeses were studied using a scanning electron microscope (SEM) in terms of organoleptic properties, such as appearance, taste, and aroma. The results show that the addition of CUNEs improved the organoleptic properties compared to the control cheese by 150% and improved its shelf life. The SEM study shows that formulation with CUNE promotes the uniform distribution of porosity. The CUNE-based cheese shows a better sensory evaluation compared to the emulsion without curcumin. CUNE-processed cheese provided better antioxidant and antimicrobial analysis than the control sample and offers added value to the dairy sector.


Subject(s)
Cheese , Curcumin , Animals , Milk/chemistry , Cheese/analysis , Curcumin/pharmacology , Taste , Sensation
4.
Int J Food Sci ; 2022: 4784794, 2022.
Article in English | MEDLINE | ID: mdl-36569452

ABSTRACT

The quality of the bread has been always an important issue and needs to be improved. Curcumin nanoemulsion provides an antioxidant and other nutritional value to the bakery products. Our aim was to determine the effect of curcumin nanoemulsions as a food additive on the quality and digestibility of breads. Curcumin nanoemulsion was stabilized by using Tween 80 and an ultrasound approach and its incorporation of curcumin nanoemulsion into bread formulation as the replacement of margarine. The objects of the study were the obtained bread from wheat flour, namely, control sample, CuNE containing sample, and raw curcumin containing bread sample. The results of the sensory evaluation of prototype bread suggest that curcumin nanoemulsion does affect organoleptic properties of bread. The result of antioxidant activity for curcumin nanoemulsion bread is higher (31.59%) compared to a control bread (20.59%). Also, in addition to a positive effect, there is an increase in the total strain and the elasticity of the crumb of bread compared to the control bread. SEM (scanning electron microscope) study shows that formulation with nanoemulsion promotes uniform distribution of fine pores (porosity).

5.
Article in English | MEDLINE | ID: mdl-35570555

ABSTRACT

Since the authors are not responding to the editor's requests to fulfill the editorial requirement, therefore, the article has been withdrawn.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php. BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

6.
Food Sci Nutr ; 10(5): 1537-1547, 2022 May.
Article in English | MEDLINE | ID: mdl-35592281

ABSTRACT

In the present work, we studied the formation of sunflower oil nanoemulsion using ultrasound techniques. Later, we investigated the development of active films based on a mixture of whey protein containing sunflower oil base nanoemulsion with different concentrations (10, 25, and 50% of total whey protein). The prepared film was by analyzing using the Fourier transform infrared (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscope (FE-SEM). The film shows no changes in its integrity and crystallinity compared to the virgin film. The presence of nanoemulsion improves the mechanical properties from 2.75 MPa to 3.52 MPa while it decreases the water vapor permeability from 3.4 × 10-10 to 1.3 × 10-10g/m.s.Pa for concentrations NE (50% of Whey protein). The antioxidant activity for Tween 20 nanoemulsion is 38.7% compared to 36.1% for Tween 80 nanoemulsion. The antimicrobial activity of the film contains sunflower nanoemulsion higher than virgin films. The results showed the potential of blend film of whey protein with nanoemulsion for active films for novel food protection.

SELECTION OF CITATIONS
SEARCH DETAIL
...