Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 05 05.
Article in English | MEDLINE | ID: mdl-33949309

ABSTRACT

Plants produce diverse metabolites to cope with the challenges presented by complex and ever-changing environments. These challenges drive the diversification of specialized metabolites within and between plant species. However, we are just beginning to understand how frequently new alleles arise controlling specialized metabolite diversity and how the geographic distribution of these alleles may be structured by ecological and demographic pressures. Here, we measure the variation in specialized metabolites across a population of 797 natural Arabidopsis thaliana accessions. We show that a combination of geography, environmental parameters, demography and different genetic processes all combine to influence the specific chemotypes and their distribution. This showed that causal loci in specialized metabolism contain frequent independently generated alleles with patterns suggesting potential within-species convergence. This provides a new perspective about the complexity of the selective forces and mechanisms that shape the generation and distribution of allelic variation that may influence local adaptation.


Since plants cannot move, they have evolved chemical defenses to help them respond to changes in their surroundings. For example, where animals run from predators, plants may produce toxins to put predators off. This approach is why plants are such a rich source of drugs, poisons, dyes and other useful substances. The chemicals plants produce are known as specialized metabolites, and they can change a lot between, and even within, plant species. The variety of specialized metabolites is a result of genetic changes and evolution over millions of years. Evolution is a slow process, yet plants are able to rapidly develop new specialized metabolites to protect them from new threats. Even different populations of the same species produce many distinct metabolites that help them survive in their surroundings. However, the factors that lead plants to produce new metabolites are not well understood, and it is not known how this affects genetic variation. To gain a better understanding of this process, Katz et al. studied 797 European variants of a common weed species called Arabidopsis thaliana, which is widely studied. The investigation found that many factors affect the range of specialized metabolites in each variant. These included local geography and environment, as well as genetics and population history (demography). Katz et al. revealed a pattern of relationships between the variants that could mirror their evolutionary history as the species spread and adapted to new locations. These results highlight the complex network of factors that affect plant evolution. Rapid diversification is key to plant survival in new and changing environments and has resulted in a wide range of specialized metabolites. As such they are of interest both for studying plant evolution and for understanding their ecology. Expanding similar work to more populations and other species will broaden the scope of our ability to understand how plants adapt to their surroundings.


Subject(s)
Adaptation, Physiological/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Environment , Genetic Variation , Genome, Plant , Adaptation, Physiological/physiology , Europe , Geography , Metabolic Networks and Pathways , Phenotype
2.
Plant Physiol ; 183(2): 483-500, 2020 06.
Article in English | MEDLINE | ID: mdl-32317360

ABSTRACT

Gln is a key player in plant metabolism. It is one of the major free amino acids that is transported into the developing seed and is central for nitrogen metabolism. However, Gln natural variation and its regulation and interaction with other metabolic processes in seeds remain poorly understood. To investigate the latter, we performed a metabolic genome-wide association study (mGWAS) of Gln-related traits measured from the dry seeds of the Arabidopsis (Arabidopsis thaliana) diversity panel using all potential ratios between Gln and the other members of the Glu family as traits. This semicombinatorial approach yielded multiple candidate genes that, upon further analysis, revealed an unexpected association between the aliphatic glucosinolates (GLS) and the Gln-related traits. This finding was confirmed by an independent quantitative trait loci mapping and statistical analysis of the relationships between the Gln-related traits and the presence of specific GLS in seeds. Moreover, an analysis of Arabidopsis mutants lacking GLS showed an extensive seed-specific impact on Gln levels and composition that manifested early in seed development. The elimination of GLS in seeds was associated with a large effect on seed nitrogen and sulfur homeostasis, which conceivably led to the Gln response. This finding indicates that both Gln and GLS play key roles in shaping the seed metabolic homeostasis. It also implies that select secondary metabolites might have key functions in primary seed metabolism. Finally, our study shows that an mGWAS performed on dry seeds can uncover key metabolic interactions that occur early in seed development.


Subject(s)
Genome-Wide Association Study/methods , Glucosinolates/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Phenotype , Quantitative Trait Loci/genetics
3.
Plant J ; 102(4): 838-855, 2020 05.
Article in English | MEDLINE | ID: mdl-31901179

ABSTRACT

Free amino acids (FAAs) and protein-bound amino acids (PBAAs) in seeds play an important role in seed desiccation, longevity, and germination. However, the effect that water stress has on these two functional pools, especially when imposed during the crucial seed setting stage is unclear. To better understand these effects, we exposed Arabidopsis plants at the seed setting stage to a range of water limitation and water deprivation conditions and then evaluated physiological, metabolic, and proteomic parameters, with special focus on FAAs and PBAAs. We found that in response to severe water limitation, seed yield decreased, while seed weight, FAA, and PBAA content per seed increased. Nevertheless, the composition of FAAs and PBAAs remained unaltered. In response to severe water deprivation, however, both seed yield and weight were reduced. In addition, major alterations were observed in both FAA and proteome compositions, which indicated that both osmotic adjustment and proteomic reprogramming occurred in these naturally desiccation-tolerant organs. However, despite the major proteomic alteration, the PBAA composition did not change, suggesting that the proteomic reprogramming was followed by a proteomic rebalancing. Proteomic rebalancing has not been observed previously in response to stress, but its occurrence under stress strongly suggests its natural function. Together, our data show that the dry seed PBAA composition plays a key role in seed fitness and therefore is rigorously maintained even under severe water stress, while the FAA composition is more plastic and adaptable to changing environments, and that both functional pools are distinctly regulated.


Subject(s)
Amino Acids/metabolism , Arabidopsis/physiology , Proteome , Arabidopsis Proteins/metabolism , Dehydration , Proteomics , Seeds/physiology
4.
Front Plant Sci ; 9: 553, 2018.
Article in English | MEDLINE | ID: mdl-29922307

ABSTRACT

Current morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in seed plants and are sensitive to processing artifacts. We explore the use of persistent homology, a topological method applied as a filtration across simplicial complexes (or more simply, a method to measure topological features of spaces across different spatial resolutions), to overcome these limitations. The described method isolates subsets of shape features and measures the spatial relationship of neighboring pixel densities in a shape. We apply the method to the analysis of 182,707 leaves, both published and unpublished, representing 141 plant families collected from 75 sites throughout the world. By measuring leaves from throughout the seed plants using persistent homology, a defined morphospace comparing all leaves is demarcated. Clear differences in shape between major phylogenetic groups are detected and estimates of leaf shape diversity within plant families are made. The approach predicts plant family above chance. The application of a persistent homology method, using topological features, to measure leaf shape allows for a unified morphometric framework to measure plant form, including shapes, textures, patterns, and branching architectures.

SELECTION OF CITATIONS
SEARCH DETAIL
...