Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell ; 185(11): 1924-1942.e23, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35525247

ABSTRACT

For many solid malignancies, lymph node (LN) involvement represents a harbinger of distant metastatic disease and, therefore, an important prognostic factor. Beyond its utility as a biomarker, whether and how LN metastasis plays an active role in shaping distant metastasis remains an open question. Here, we develop a syngeneic melanoma mouse model of LN metastasis to investigate how tumors spread to LNs and whether LN colonization influences metastasis to distant tissues. We show that an epigenetically instilled tumor-intrinsic interferon response program confers enhanced LN metastatic potential by enabling the evasion of NK cells and promoting LN colonization. LN metastases resist T cell-mediated cytotoxicity, induce antigen-specific regulatory T cells, and generate tumor-specific immune tolerance that subsequently facilitates distant tumor colonization. These effects extend to human cancers and other murine cancer models, implicating a conserved systemic mechanism by which malignancies spread to distant organs.


Subject(s)
Lymph Nodes , Melanoma , Animals , Immune Tolerance , Immunotherapy , Lymphatic Metastasis/pathology , Melanoma/pathology , Mice
2.
Annu Rev Pathol ; 16: 223-249, 2021 01 24.
Article in English | MEDLINE | ID: mdl-33197221

ABSTRACT

Immune checkpoint inhibitors (ICIs) have made an indelible mark in the field of cancer immunotherapy. Starting with the approval of anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) for advanced-stage melanoma in 2011, ICIs-which now also include antibodies against programmed cell death 1 (PD-1) and its ligand (PD-L1)-quickly gained US Food and Drug Administration approval for the treatment of a wide array of cancer types, demonstrating unprecedented extension of patient survival. However, despite the success of ICIs, resistance to these agents restricts the number of patients able to achieve durable responses, and immune-related adverse events complicate treatment. Thus, a better understanding of the requirements for an effective and safe antitumor immune response following ICI therapy is needed. Studies of both tumoral and systemic changes in the immune system following ICI therapy have yielded insight into the basis for both efficacy and resistance. Ultimately, by building on these insights, researchers should be able to combine ICIs with other agents, or design new immunotherapies, to achieve broader and more durable efficacy as well as greater safety. Here, we review the history and clinical utility of ICIs, the mechanisms of resistance to therapy, and local and systemic immune cell changes associated with outcome.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Neoplasms/drug therapy , Neoplasms/immunology , Animals , Drug Resistance, Neoplasm/physiology , Humans
3.
Front Oncol ; 10: 595892, 2020.
Article in English | MEDLINE | ID: mdl-33282743

ABSTRACT

Enteric glia are a distinct population of peripheral glial cells in the enteric nervous system that regulate intestinal homeostasis, epithelial barrier integrity, and gut defense. Given these unique attributes, we investigated the impact of enteric glia depletion on tumor development in azoxymethane/dextran sodium sulfate (AOM/DSS)-treated mice, a classical model of colorectal cancer (CRC). Depleting GFAP+ enteric glia resulted in a profoundly reduced tumor burden in AOM/DSS mice and additionally reduced adenomas in the ApcMin /+ mouse model of familial adenomatous polyposis, suggesting a tumor-promoting role for these cells at an early premalignant stage. This was confirmed in further studies of AOM/DSS mice, as enteric glia depletion did not affect the properties of established malignant tumors but did result in a marked reduction in the development of precancerous dysplastic lesions. Surprisingly, the protective effect of enteric glia depletion was not dependent on modulation of anti-tumor immunity or intestinal inflammation. These findings reveal that GFAP+ enteric glia play a critical pro-tumorigenic role during early CRC development and identify these cells as a potential target for CRC prevention.

4.
Front Immunol ; 9: 1616, 2018.
Article in English | MEDLINE | ID: mdl-30061888

ABSTRACT

Dyslipidemia, or altered blood lipid content, is a risk factor for developing cardiovascular disease. Furthermore, several autoimmune diseases, including systemic lupus erythematosus, psoriasis, diabetes, and rheumatoid arthritis, are correlated highly with dyslipidemia. One common thread between both autoimmune diseases and altered lipid levels is the presence of inflammation, suggesting that the immune system might act as the link between these related pathologies. Deciphering the role of innate and adaptive immune responses in autoimmune diseases and, more recently, obesity-related inflammation, have been active areas of research. The broad picture suggests that antigen-presenting molecules, which present self-peptides to autoreactive T cells, can result in either aggravation or amelioration of inflammation. However, very little is known about the role of self-lipid reactive T cells in dyslipidemia-associated autoimmune events. Given that a range of autoimmune diseases are linked to aberrant lipid profiles and a majority of lipid-specific T cells are reactive to self-antigens, it is important to examine the role of these T cells in dyslipidemia-related autoimmune ailments and determine if dysregulation of these T cells can be drivers of autoimmune conditions. CD1 molecules present lipids to T cells and are divided into two groups based on sequence homology. To date, most of the information available on lipid-reactive T cells comes from the study of group 2 CD1d-restricted natural killer T (NKT) cells while T cells reactive to group 1 CD1 molecules remain understudied, despite their higher abundance in humans compared to NKT cells. This review evaluates the mechanisms by which CD1-reactive, self-lipid specific T cells contribute to dyslipidemia-associated autoimmune disease progression or amelioration by examining available literature on NKT cells and highlighting recent progress made on the study of group 1 CD1-restricted T cells.

5.
J Clin Invest ; 127(6): 2339-2352, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28463230

ABSTRACT

A large proportion of human T cells are autoreactive to group 1 CD1 proteins, which include CD1a, CD1b, and CD1c. However, the physiological role of the CD1 proteins remains poorly defined. Here, we have generated a double-transgenic mouse model that expresses human CD1b and CD1c molecules (hCD1Tg) as well as a CD1b-autoreactive TCR (HJ1Tg) in the ApoE-deficient background (hCD1Tg HJ1Tg Apoe-/- mice) to determine the role of CD1-autoreactive T cells in hyperlipidemia-associated inflammatory diseases. We found that hCD1Tg HJ1Tg Apoe-/- mice spontaneously developed psoriasiform skin inflammation characterized by T cell and neutrophil infiltration and a Th17-biased cytokine response. Anti-IL-17A treatment ameliorated skin inflammation in vivo. Additionally, phospholipids and cholesterol preferentially accumulated in diseased skin and these autoantigens directly activated CD1b-autoreactive HJ1 T cells. Furthermore, hyperlipidemic serum enhanced IL-6 secretion by CD1b+ DCs and increased IL-17A production by HJ1 T cells. In psoriatic patients, the frequency of CD1b-autoreactive T cells was increased compared with that in healthy controls. Thus, this study has demonstrated the pathogenic role of CD1b-autoreactive T cells under hyperlipidemic conditions in a mouse model of spontaneous skin inflammation. As a large proportion of psoriatic patients are dyslipidemic, this finding is of clinical significance and indicates that self-lipid-reactive T cells might serve as a possible link between hyperlipidemia and psoriasis.


Subject(s)
Antigens, CD1/metabolism , Dermatitis/immunology , Hyperlipidemias/immunology , Psoriasis/immunology , T-Lymphocytes/immunology , Animals , Cells, Cultured , Coculture Techniques , Humans , Hyperlipidemias/complications , Lymphocyte Activation , Mice, Knockout , Neutrophil Infiltration , Skin/immunology , Skin/pathology
6.
Oncoimmunology ; 5(9): e1213932, 2016.
Article in English | MEDLINE | ID: mdl-27757307

ABSTRACT

Adoptive immunotherapy for cancer treatment is an emerging field of study. Till now, several tumor-derived, peptide-specific T cell responses have been harnessed for treating cancers. However, the contribution of lipid-specific T cells in tumor immunity has been understudied. CD1 molecules, which present self- and foreign lipid antigens to T cells, are divided into group 1 (CD1a, CD1b, and CD1c) and group 2 (CD1d). Although the role of CD1d-restricted natural killer T cells (NKT) in several tumor models has been well established, the contribution of group 1 CD1-restricted T cells in tumor immunity remains obscure due to the lack of group 1 CD1 expression in mice. In this study, we used a double transgenic mouse model expressing human group 1 CD1 molecules (hCD1Tg) and a CD1b-restricted, self-lipid reactive T cell receptor (HJ1Tg) to study the potential role of group 1 CD1-restricted autoreactive T cells in antitumor response. We found that HJ1 T cells recognized phospholipids and responded more potently to lipid extracted from tumor cells than the equivalent amount of lipids extracted from normal cells. Additionally, the autoreactivity of HJ1 T cells was enhanced upon treatment with various intracellular toll-like receptor (TLR) agonists, including CpG oligodeoxynucleotides (ODN), R848, and poly (I:C). Interestingly, the adoptive transfer of HJ1 T cells conferred protection against the CD1b-transfected murine T cell lymphoma (RMA-S/CD1b) and CpG ODN enhanced the antitumor effect. Thus, this study, for the first time, demonstrates the antitumor potential of CD1b-autoreactive T cells and their potential use in adoptive immunotherapy.

7.
Elife ; 42015 Dec 10.
Article in English | MEDLINE | ID: mdl-26652001

ABSTRACT

Group 1 CD1 molecules, CD1a, CD1b and CD1c, present lipid antigens from Mycobacterium tuberculosis (Mtb) to T cells. Mtb lipid-specific group 1 CD1-restricted T cells have been detected in Mtb-infected individuals. However, their role in protective immunity against Mtb remains unclear due to the absence of group 1 CD1 expression in mice. To overcome the challenge, we generated mice that expressed human group 1 CD1 molecules (hCD1Tg) and a CD1b-restricted, mycolic-acid specific TCR (DN1Tg). Using DN1Tg/hCD1Tg mice, we found that activation of DN1 T cells was initiated in the mediastinal lymph nodes and showed faster kinetics compared to Mtb Ag85B-specific CD4(+) T cells after aerosol infection with Mtb. Additionally, activated DN1 T cells exhibited polyfunctional characteristics, accumulated in lung granulomas, and protected against Mtb infection. Therefore, our findings highlight the vaccination potential of targeting group 1 CD1-restricted lipid-specific T cells against Mtb infection.


Subject(s)
Mycobacterium tuberculosis/immunology , Mycolic Acids/immunology , T-Lymphocyte Subsets/immunology , Tuberculosis/immunology , Animals , Antigens, Bacterial/immunology , Antigens, CD1/genetics , Antigens, CD1/metabolism , Humans , Lymphocyte Activation , Mice , Mice, SCID , Mice, Transgenic , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
8.
Eur J Immunol ; 44(12): 3646-57, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25236978

ABSTRACT

CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT-cell TCR transgenic mouse model, we demonstrated that CD1d-expressing hematopoietic cells, but not thymic epithelial cells, meditate efficient selection of type II NKT cells. Furthermore, we showed that SAP regulates type II NKT-cell development by controlling early growth response 2 protein and promyelocytic leukemia zinc finger expression. SAP-deficient 24αß transgenic T cells (24αß T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αß T cells was associated with reduced IFN regulatory factor 4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP.


Subject(s)
Genetic Diseases, X-Linked/immunology , Immunity, Cellular , Interleukin-4/immunology , Intracellular Signaling Peptides and Proteins/immunology , Lymphoma/immunology , Natural Killer T-Cells/immunology , Animals , Antigens, CD1d/genetics , Antigens, CD1d/immunology , Cell Line, Tumor , Early Growth Response Protein 2/genetics , Early Growth Response Protein 2/immunology , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/immunology , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/pathology , Interleukin-4/genetics , Intracellular Signaling Peptides and Proteins/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/immunology , Lymphoma/genetics , Lymphoma/pathology , Mice , Mice, Knockout , Natural Killer T-Cells/pathology , Promyelocytic Leukemia Zinc Finger Protein , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Signaling Lymphocytic Activation Molecule Associated Protein
9.
Oncoimmunology ; 3: e28977, 2014.
Article in English | MEDLINE | ID: mdl-25057452

ABSTRACT

Type II natural killer T (NKT) cells in cancer immunity are typically associated with suppression of tumor immunosurveillance through secretion of IL-13. We previously demonstrated that CpG oligonucleotide therapy activated Type II NKT cells to produce T helper type 1 (Th1) rather than T helper type 2 (Th2) cytokines. This cytokine skewing may manifest in Type II NKT cell antitumor properties in an immunotherapeutic setting.

10.
Proc Natl Acad Sci U S A ; 111(7): 2674-9, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24550295

ABSTRACT

CD1d-restricted natural killer T (NKT) cells are innate-like T cells with potent immunomodulatory function via rapid production of both Th1 and Th2 cytokines. NKT cells comprise well-characterized type I NKT cells, which can be detected by α-galactosylceramide-loaded CD1d tetramers, and less-studied type II NKT cells, which do not recognize α-galactosylceramide. Here we characterized type II NKT cells on a polyclonal level by using a Jα18-deficient IL-4 reporter mouse model. This model allows us to track type II NTK cells by the GFP(+)TCRß(+) phenotype in the thymus and liver. We found type II NKT cells, like type I NKT cells, exhibit an activated phenotype and are dependent on the transcriptional regulator promyelocytic leukemia zinc finger (PLZF) and the adaptor molecule signaling lymphocyte activation molecule-associated protein (SAP) for their development. Type II NKT cells are potently activated by ß-D-glucopyranosylceramide (ß-GlcCer) but not sulfatide or phospholipids in a CD1d-dependent manner, with the stimulatory capacity of ß-GlcCer influenced by acyl chain length. Compared with type I NKT cells, type II NKT cells produce lower levels of IFN-γ but comparable amounts of IL-13 in response to polyclonal T-cell receptor stimulation, suggesting they may play different roles in regulating immune responses. Furthermore, type II NKT cells can be activated by CpG oligodeoxynucletides to produce IFN-γ, but not IL-4 or IL-13. Importantly, CpG-activated type II NKT cells contribute to the antitumor effect of CpG in the B16 melanoma model. Taken together, our data reveal the characteristics of polyclonal type II NKT cells and their potential role in antitumor immunotherapy.


Subject(s)
Immunomodulation/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Melanoma, Experimental/immunology , Natural Killer T-Cells/immunology , Animals , CpG Islands/genetics , DNA Primers/genetics , Flow Cytometry , Green Fluorescent Proteins/metabolism , Intracellular Signaling Peptides and Proteins/immunology , Kruppel-Like Transcription Factors/immunology , Melanoma, Experimental/therapy , Mice , Mice, Knockout , Promyelocytic Leukemia Zinc Finger Protein , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signaling Lymphocytic Activation Molecule Associated Protein
11.
Infect Immun ; 81(5): 1399-410, 2013 May.
Article in English | MEDLINE | ID: mdl-23429532

ABSTRACT

Type II protein secretion (T2S) by Legionella pneumophila is required for intracellular infection of host cells, including macrophages and the amoebae Acanthamoeba castellanii and Hartmannella vermiformis. Previous proteomic analysis revealed that T2S by L. pneumophila 130b mediates the export of >25 proteins, including several that appeared to be novel. Following confirmation that they are unlike known proteins, T2S substrates NttA, NttB, and LegP were targeted for mutation. nttA mutants were impaired for intracellular multiplication in A. castellanii but not H. vermiformis or macrophages, suggesting that novel exoproteins which are specific to Legionella are especially important for infection. Because the importance of NttA was host cell dependent, we examined a panel of T2S substrate mutants that had not been tested before in more than one amoeba. As a result, RNase SrnA, acyltransferase PlaC, and metalloprotease ProA all proved to be required for optimal intracellular multiplication in H. vermiformis but not A. castellanii. Further examination of an lspF mutant lacking the T2S apparatus documented that T2S is also critical for infection of the amoeba Naegleria lovaniensis. Mutants lacking SrnA, PlaC, or ProA, but not those deficient for NttA, were defective in N. lovaniensis. Based upon analysis of a double mutant lacking PlaC and ProA, the role of ProA in H. vermiformis was connected to its ability to activate PlaC, whereas in N. lovaniensis, ProA appeared to have multiple functions. Together, these data document that the T2S system exports multiple effectors, including a novel one, which contribute in different ways to the broad host range of L. pneumophila.


Subject(s)
Acanthamoeba castellanii/microbiology , Bacterial Proteins/metabolism , Hartmannella/microbiology , Legionella pneumophila/metabolism , Naegleria/microbiology , Blotting, Southern , DNA, Bacterial/analysis , Humans , Legionella pneumophila/genetics , Legionella pneumophila/growth & development , Macrophages/microbiology , RNA, Bacterial/analysis , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...