Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Matrix Biol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925225

ABSTRACT

Cardiac fibroblasts are pivotal regulators of cardiac homeostasis and are essential in the repair of the heart after myocardial infarction (MI), but their function can also become dysregulated, leading to adverse cardiac remodelling involving both fibrosis and hypertrophy. MicroRNAs (miRNAs) are noncoding RNAs that target mRNAs to prevent their translation, with specific miRNAs showing differential expression and regulation in cardiovascular disease. Here, we show that miR-214-3p is enriched in the fibroblast fraction of the murine heart, and its levels are increased with cardiac remodelling associated with heart failure, or in the acute phase after experimental MI. Tandem mass tagging proteomics and in-silico network analyses were used to explore protein targets regulated by miR-214-3p in cultured human cardiac fibroblasts from multiple donors. Overexpression of miR-214-3p by miRNA mimics resulted in decreased expression and activity of the Piezo1 mechanosensitive cation channel, increased expression of the entire lysyl oxidase (LOX) family of collagen cross-linking enzymes, and decreased expression of an array of mitochondrial proteins, including mitofusin-2 (MFN2), resulting in mitochondrial dysfunction, as measured by citrate synthase and Seahorse mitochondrial respiration assays. Collectively, our data suggest that miR-214-3p is an important regulator of cardiac fibroblast phenotypes and functions key to cardiac remodelling, and that this miRNA represents a potential therapeutic target in cardiovascular disease.

2.
JCI Insight ; 52019 08 08.
Article in English | MEDLINE | ID: mdl-31393855

ABSTRACT

It has been hypothesized that interleukin-1alpha (IL-1α) is released from damaged cardiomyocytes following myocardial infarction (MI) and activates cardiac fibroblasts via its receptor (IL-1R1) to drive the early stages of cardiac remodeling. This study aimed to definitively test this hypothesis using cell type-specific IL-1α and IL-1R1 knockout (KO) mouse models. A floxed Il1α mouse was created and used to generate a cardiomyocyte-specific IL-1α KO mouse line (MIL1AKO). A tamoxifen-inducible fibroblast-specific IL-1R1 hemizygous KO mouse line (FIL1R1KO) was also generated. Mice underwent experimental MI (permanent left anterior descending coronary artery ligation) and cardiac function was determined 4 weeks later by conductance pressure-volume catheter analysis. Molecular markers of remodeling were evaluated at various time points by real-time RT-PCR and histology. MIL1AKO mice showed no difference in cardiac function or molecular markers of remodeling post-MI compared with littermate controls. In contrast, FIL1R1KO mice showed improved cardiac function and reduced remodeling markers post-MI compared with littermate controls. In conclusion, these data highlight a key role for the IL-1R1/cardiac fibroblast signaling axis in regulating post-MI remodeling and provide support for the continued development of anti-IL-1 therapies for improving cardiac function after MI. Cardiomyocyte-derived IL-1α was not an important contributor to post-MI remodeling in this model.


Subject(s)
Fibroblasts/metabolism , Myocardial Infarction/metabolism , Receptors, Interleukin-1 Type I/metabolism , Ventricular Remodeling/physiology , Animals , Cytokines/metabolism , Disease Models, Animal , Fibrosis/metabolism , Heart Failure , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Male , Mice , Mice, Knockout , Myocardial Infarction/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Receptors, Interleukin-1 Type I/genetics , Signal Transduction
3.
FASEB J ; 32(9): 4941-4954, 2018 09.
Article in English | MEDLINE | ID: mdl-29601781

ABSTRACT

Recent studies suggest that cardiac fibroblast-specific p38α MAPK contributes to the development of cardiac hypertrophy, but the underlying mechanism is unknown. Our study used a novel fibroblast-specific, tamoxifen-inducible p38α knockout (KO) mouse line to characterize the role of fibroblast p38α in modulating cardiac hypertrophy, and we elucidated the mechanism. Myocardial injury was induced in tamoxifen-treated Cre-positive p38α KO mice or control littermates via chronic infusion of the ß-adrenergic receptor agonist isoproterenol. Cardiac function was assessed by pressure-volume conductance catheter analysis and was evaluated for cardiac hypertrophy at tissue, cellular, and molecular levels. Isoproterenol infusion in control mice promoted overt cardiac hypertrophy and dysfunction (reduced ejection fraction, increased end systolic volume, increased cardiac weight index, increased cardiomyocyte area, increased fibrosis, and up-regulation of myocyte fetal genes and hypertrophy-associated microRNAs). Fibroblast-specific p38α KO mice exhibited marked protection against myocardial injury, with isoproterenol-induced alterations in cardiac function, histology, and molecular markers all being attenuated. In vitro mechanistic studies determined that cardiac fibroblasts responded to damaged myocardium by secreting several paracrine factors known to induce cardiomyocyte hypertrophy, including IL-6, whose secretion was dependent upon p38α activity. In conclusion, cardiac fibroblast p38α contributes to cardiomyocyte hypertrophy and cardiac dysfunction, potentially via a mechanism involving paracrine fibroblast-to-myocyte IL-6 signaling.-Bageghni, S. A., Hemmings, K. E., Zava, N., Denton, C. P., Porter, K. E., Ainscough, J. F. X., Drinkhill, M. J., Turner, N. A. Cardiac fibroblast-specific p38α MAP kinase promotes cardiac hypertrophy via a putative paracrine interleukin-6 signaling mechanism.


Subject(s)
Fibroblasts/drug effects , Interleukin-6/metabolism , Isoproterenol/pharmacology , Myocytes, Cardiac/drug effects , Signal Transduction/drug effects , Adrenergic beta-Agonists/pharmacology , Animals , Cardiomegaly/drug therapy , Cardiomegaly/genetics , MAP Kinase Signaling System/drug effects , Mice, Knockout , Myocardium/pathology
4.
J Endocrinol ; 233(3): 315-327, 2017 06.
Article in English | MEDLINE | ID: mdl-28522730

ABSTRACT

We have previously demonstrated that neutrophil recruitment to the heart following myocardial infarction (MI) is enhanced in mice lacking 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) that regenerates active glucocorticoid within cells from intrinsically inert metabolites. The present study aimed to identify the mechanism of regulation. In a mouse model of MI, neutrophil mobilization to blood and recruitment to the heart were higher in 11ß-HSD1-deficient (Hsd11b1-/- ) relative to wild-type (WT) mice, despite similar initial injury and circulating glucocorticoid. In bone marrow chimeric mice, neutrophil mobilization was increased when 11ß-HSD1 was absent from host cells, but not when absent from donor bone marrow-derived cells. Consistent with a role for 11ß-HSD1 in 'host' myocardium, gene expression of a subset of neutrophil chemoattractants, including the chemokines Cxcl2 and Cxcl5, was selectively increased in the myocardium of Hsd11b1-/- mice relative to WT. SM22α-Cre directed disruption of Hsd11b1 in smooth muscle and cardiomyocytes had no effect on neutrophil recruitment. Expression of Cxcl2 and Cxcl5 was elevated in fibroblast fractions isolated from hearts of Hsd11b1-/- mice post MI and provision of either corticosterone or of the 11ß-HSD1 substrate, 11-dehydrocorticosterone, to cultured murine cardiac fibroblasts suppressed IL-1α-induced expression of Cxcl2 and Cxcl5 These data identify suppression of CXCL2 and CXCL5 chemoattractant expression by 11ß-HSD1 as a novel mechanism with potential for regulation of neutrophil recruitment to the injured myocardium, and cardiac fibroblasts as a key site for intracellular glucocorticoid regeneration during acute inflammation following myocardial injury.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Chemokine CXCL2/metabolism , Chemokine CXCL5/metabolism , Fibroblasts/physiology , Neutrophils/physiology , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Animals , Bone Marrow Cells , Cells, Cultured , Chemokine CXCL5/genetics , Corticosterone/analogs & derivatives , Corticosterone/pharmacology , Male , Mice , Mice, Knockout , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Myocardial Infarction
5.
Genes Dev ; 31(9): 876-888, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28546514

ABSTRACT

The nuclear matrix protein Cip1-interacting zinc finger protein 1 (CIZ1) promotes DNA replication in association with cyclins and has been linked to adult and pediatric cancers. Here we show that CIZ1 is highly enriched on the inactive X chromosome (Xi) in mouse and human female cells and is retained by interaction with the RNA-dependent nuclear matrix. CIZ1 is recruited to Xi in response to expression of X inactive-specific transcript (Xist) RNA during the earliest stages of X inactivation in embryonic stem cells and is dependent on the C-terminal nuclear matrix anchor domain of CIZ1 and the E repeats of Xist CIZ1-null mice, although viable, display fully penetrant female-specific lymphoproliferative disorder. Interestingly, in mouse embryonic fibroblast cells derived from CIZ1-null embryos, Xist RNA localization is disrupted, being highly dispersed through the nucleoplasm rather than focal. Focal localization is reinstated following re-expression of CIZ1. Focal localization of Xist RNA is also disrupted in activated B and T cells isolated from CIZ1-null animals, suggesting a possible explanation for female-specific lymphoproliferative disorder. Together, these findings suggest that CIZ1 has an essential role in anchoring Xist to the nuclear matrix in specific somatic lineages.


Subject(s)
Gene Expression Regulation , Lymphoproliferative Disorders/pathology , Nuclear Proteins/physiology , RNA, Long Noncoding/metabolism , X Chromosome Inactivation , X Chromosome/metabolism , Animals , Cell Differentiation , Cells, Cultured , Embryo, Mammalian/metabolism , Embryo, Mammalian/pathology , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/pathology , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , RNA, Long Noncoding/genetics , Sex Characteristics , X Chromosome/genetics
6.
Biol Open ; 6(1): 92-99, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27934662

ABSTRACT

Myocardial injury in mammals leads to heart failure through pathological cardiac remodelling that includes hypertrophy, fibrosis and ventricular dilatation. Central to this is inability of the mammalian cardiomyocyte to self-renew due to entering a quiescent state after birth. Modulation of the cardiomyocyte cell-cycle after injury is therefore a target mechanism to limit damage and potentiate repair and regeneration. Here, we show that cardiomyocyte-specific over-expression of the nuclear-matrix--associated DNA replication protein, CIZ1, extends their window of proliferation during cardiac development, delaying onset of terminal differentiation without compromising function. CIZ1-expressing hearts are enlarged, but the cardiomyocytes are smaller with an overall increase in number, correlating with increased DNA replication after birth and retention of an increased proportion of mono-nucleated cardiomyocytes into adulthood. Furthermore, these CIZ1 induced changes in the heart reduce the impact of myocardial injury, identifying CIZ1 as a putative therapeutic target for cardiac repair.

7.
Cardiovasc Pathol ; 23(4): 204-10, 2014.
Article in English | MEDLINE | ID: mdl-24746387

ABSTRACT

INTRODUCTION: Type 2 diabetes mellitus (T2DM) promotes adverse myocardial remodeling and increased risk of heart failure; effects that can occur independently of hypertension or coronary artery disease. As cardiac fibroblasts (CFs) are key effectors of myocardial remodeling, we investigated whether inherent phenotypic differences exist in CF derived from T2DM donors compared with cells from nondiabetic (ND) donors. METHODS: Cell morphology (cell area), proliferation (cell counting over 7-day period), insulin signaling [phospho-Akt and phospho-extracellular signal-regulated kinase (ERK) Western blotting], and mRNA expression of key remodeling genes [real-time reverse transcription-polymerase chain reaction (RT-PCR)] were compared in CF cultured from atrial tissue from 14 ND and 12 T2DM donors undergoing elective coronary artery bypass surgery. RESULTS: The major finding was that Type I collagen (COL1A1) mRNA levels were significantly elevated by twofold in cells derived from T2DM donors compared with those from ND donors; changes reflected at the protein level. T2DM cells had similar proliferation rates but a greater variation in cell size and a trend towards increased cell area compared with ND cells. Insulin-induced Akt and ERK phosphorylation were similar in the two cohorts of cells. CONCLUSION: CF from T2DM individuals possess an inherent profibrotic phenotype that may help to explain the augmented cardiac fibrosis observed in diabetic patients. MINI SUMMARY: We investigated whether inherent phenotypic differences exist between CF cultured from donors with or without Type 2 diabetes. Cell morphology, proliferation, insulin signaling, and gene expression were compared between multiple cell populations. The major finding was that Type I collagen levels were elevated in fibroblasts from diabetic donors, which may help explain the augmented cardiac fibrosis observed with diabetes.


Subject(s)
Diabetes Mellitus, Type 2/pathology , Myocardium/pathology , Atrial Remodeling/genetics , Atrial Remodeling/physiology , Cell Proliferation , Cell Size , Cells, Cultured , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Humans , Interleukin-1alpha/metabolism , MAP Kinase Signaling System , Myocardium/cytology , Myocardium/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Insulin/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...