Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nat Astron ; 8(5): 567-576, 2024.
Article in English | MEDLINE | ID: mdl-38798715

ABSTRACT

Jupiter's moon Europa has a predominantly water-ice surface that is modified by exposure to its space environment. Charged particles break molecular bonds in surface ice, thus dissociating the water to ultimately produce H2 and O2, which provides a potential oxygenation mechanism for Europa's subsurface ocean. These species are understood to form Europa's primary atmospheric constituents. Although remote observations provide important global constraints on Europa's atmosphere, the molecular O2 abundance has been inferred from atomic O emissions. Europa's atmospheric composition had never been directly sampled and model-derived oxygen production estimates ranged over several orders of magnitude. Here, we report direct observations of H2+ and O2+ pickup ions from the dissociation of Europa's water-ice surface and confirm these species are primary atmospheric constituents. In contrast to expectations, we find the H2 neutral atmosphere is dominated by a non-thermal, escaping population. We find 12 ± 6 kg s-1 (2.2 ± 1.2 × 1026 s-1) O2 are produced within Europa's surface, less than previously thought, with a narrower range to support habitability in Europa's ocean. This process is found to be Europa's dominant exogenic surface erosion mechanism over meteoroid bombardment.

2.
J Geophys Res Space Phys ; 127(8): e2022JA030334, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36247326

ABSTRACT

The Juno spacecraft's polar orbits have enabled direct sampling of Jupiter's low-altitude auroral field lines. While various data sets have identified unique features over Jupiter's main aurora, they are yet to be analyzed altogether to determine how they can be reconciled and fit into the bigger picture of Jupiter's auroral generation mechanisms. Jupiter's main aurora has been classified into distinct "zones", based on repeatable signatures found in energetic electron and proton spectra. We combine fields, particles, and plasma wave data sets to analyze Zone-I and Zone-II, which are suggested to carry upward and downward field-aligned currents, respectively. We find Zone-I to have well-defined boundaries across all data sets. H+ and/or H3 + cyclotron waves are commonly observed in Zone-I in the presence of energetic upward H+ beams and downward energetic electron beams. Zone-II, on the other hand, does not have a clear poleward boundary with the polar cap, and its signatures are more sporadic. Large-amplitude solitary waves, which are reminiscent of those ubiquitous in Earth's downward current region, are a key feature of Zone-II. Alfvénic fluctuations are most prominent in the diffuse aurora and are repeatedly found to diminish in Zone-I and Zone-II, likely due to dissipation, at higher altitudes, to energize auroral electrons. Finally, we identify significant electron density depletions, by up to 2 orders of magnitude, in Zone-I, and discuss their important implications for the development of parallel potentials, Alfvénic dissipation, and radio wave generation.

3.
Geophys Res Lett ; 49(9): e2022GL098111, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35864892

ABSTRACT

Water-group gas continuously escapes from Jupiter's icy moons to form co-orbiting populations of particles or neutral toroidal clouds. These clouds provide insights into their source moons as they reveal loss processes and compositions of their parent bodies, alter local plasma composition, and act as sources and sinks for magnetospheric particles. We report the first observations of H2 + pickup ions in Jupiter's magnetosphere from 13 to 18 Jovian radii and find a density ratio of H2 +/H+ = 8 ± 4%, confirming the presence of a neutral H2 toroidal cloud. Pickup ion densities monotonically decrease radially beyond 13 R J consistent with an advecting Europa-genic toroidal cloud source. From these observations, we derive a total H2 neutral loss rate from Europa of 1.2 ± 0.7 kg s-1. This provides the most direct estimate of Europa's H2 neutral loss rate to date and underscores the importance of both ion composition and neutral toroidal clouds in understanding satellite-magnetosphere interactions.

4.
Geophys Res Lett ; 49(9): e2022GL098741, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35859815

ABSTRACT

Two distinct proton populations are observed over Jupiter's southern polar cap: a ∼1 keV core population and ∼1-300 keV dispersive conic population at 6-7 RJ planetocentric distance. We find the 1 keV core protons are likely the seed population for the higher-energy dispersive conics, which are accelerated from a distance of ∼3-5 RJ. Transient wave-particle heating in a "pressure-cooker" process is likely responsible for this proton acceleration. The plasma characteristics and composition during this period show Jupiter's polar-most field lines can be topologically closed, with conjugate magnetic footpoints connected to both hemispheres. Finally, these observations demonstrate energetic protons can be accelerated into Jupiter's magnetotail via wave-particle coupling.

5.
Geophys Res Lett ; 49(23): e2022GL099285, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-37034391

ABSTRACT

The Juno spacecraft has been in orbit around Jupiter since 2016. Two flybys of Ganymede were executed in 2021, opportunities realized by evolution of Juno's polar orbit over the intervening 5 years. The geometry of the close flyby just prior to the 34th perijove pass by Jupiter brought the spacecraft inside Ganymede's unique magnetosphere. Juno's payload, designed to study Jupiter's magnetosphere, had ample dynamic range to study Ganymede's magnetosphere. The Juno radio system was used both for gravity measurements and for study of Ganymede's ionosphere. Remote sensing of Ganymede returned new results on geology, surface composition, and thermal properties of the surface and subsurface.

6.
Science ; 364(6441)2019 05 17.
Article in English | MEDLINE | ID: mdl-31097641

ABSTRACT

The Kuiper Belt is a distant region of the outer Solar System. On 1 January 2019, the New Horizons spacecraft flew close to (486958) 2014 MU69, a cold classical Kuiper Belt object approximately 30 kilometers in diameter. Such objects have never been substantially heated by the Sun and are therefore well preserved since their formation. We describe initial results from these encounter observations. MU69 is a bilobed contact binary with a flattened shape, discrete geological units, and noticeable albedo heterogeneity. However, there is little surface color or compositional heterogeneity. No evidence for satellites, rings or other dust structures, a gas coma, or solar wind interactions was detected. MU69's origin appears consistent with pebble cloud collapse followed by a low-velocity merger of its two lobes.

7.
Geophys Res Lett ; 46(1): 19-27, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30828110

ABSTRACT

We compare electron and UV observations mapping to the same location in Jupiter's northern polar region, poleward of the main aurora, during Juno perijove 5. Simultaneous peaks in UV brightness and electron energy flux are identified when observations map to the same location at the same time. The downward energy flux during these simultaneous observations was not sufficient to generate the observed UV brightness; the upward energy flux was. We propose that the primary acceleration region is below Juno's altitude, from which the more intense upward electrons originate. For the complete interval, the UV brightness peaked at ~240 kilorayleigh (kR); the downward and upward energy fluxes peaked at 60 and 700 mW/m2, respectively. Increased downward energy fluxes are associated with increased contributions from tens of keV electrons. These observations provide evidence that bidirectional electron beams with broad energy distributions can produce tens to hundreds of kilorayleigh polar UV emissions.

8.
Geophys Res Lett ; 46(21): 11709-11717, 2019 Nov 16.
Article in English | MEDLINE | ID: mdl-31894172

ABSTRACT

On 10 January 2001, Cassini briefly entered into the magnetosphere of Jupiter, en route to Saturn. During this excursion into the Jovian magnetosphere, the Cassini Magnetosphere Imaging Instrument/Charge-Energy-Mass Spectrometer detected oxygen and sulfur ions. While Charge-Energy-Mass Spectrometer can distinguish between oxygen and sulfur charge states directly, only 95.9 ± 2.9 keV/e ions were sampled during this interval, allowing for a long time integration of the tenuous outer magnetospheric (~200 RJ) plasma at one energy. For this brief interval for the 95.9 keV/e ions, 96% of oxygen ions were O+, with the other 4% as O2+, while 25% of the energetic sulfur ions were S+, 42% S2+, and 33% S3+. The S2+/O+ flux ratio was observed to be 0.35 (±0.06 Poisson error).

9.
J Geophys Res Space Phys ; 124(9): 7413-7424, 2019 Sep.
Article in English | MEDLINE | ID: mdl-35860291

ABSTRACT

Pluto energies of a few kiloelectron volts and suprathermal ions with tens of kiloelectron volts and above. We measure this population using the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument on board the New Horizons spacecraft that flew by Pluto in 2015. Even though the measured ions have gyroradii larger than the size of Pluto and the cross section of its magnetosphere, we find that the boundary of the magnetosphere is depleting the energetic ion intensities by about an order of magnitude close to Pluto. The intensity is increasing exponentially with distance to Pluto and reaches nominal levels of the interplanetary medium at about 190R P distance. Inside the wake of Pluto, we observe oscillations of the ion intensities with a periodicity of about 0.2 hr. We show that these can be quantitatively explained by the electric field of an ultralow-frequency wave and discuss possible physical drivers for such a field. We find no evidence for the presence of plutogenic ions in the considered energy range.

10.
Science ; 361(6404): 774-777, 2018 08 24.
Article in English | MEDLINE | ID: mdl-29976795

ABSTRACT

Jupiter's aurorae are produced in its upper atmosphere when incoming high-energy electrons precipitate along the planet's magnetic field lines. A northern and a southern main auroral oval are visible, surrounded by small emission features associated with the Galilean moons. We present infrared observations, obtained with the Juno spacecraft, showing that in the case of Io, this emission exhibits a swirling pattern that is similar in appearance to a von Kármán vortex street. Well downstream of the main auroral spots, the extended tail is split in two. Both of Ganymede's footprints also appear as a pair of emission features, which may provide a remote measure of Ganymede's magnetosphere. These features suggest that the magnetohydrodynamic interaction between Jupiter and its moon is more complex than previously anticipated.

11.
Geophys Res Lett ; 44(15): 7668-7675, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28989207

ABSTRACT

Juno ultraviolet spectrograph (UVS) observations of Jupiter's aurora obtained during approach are presented. Prior to the bow shock crossing on 24 June 2016, the Juno approach provided a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions are expected to be controlled or modified by local solar wind conditions. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions, acquired during 3-29 June 2016, with in situ solar wind observations, and related Jupiter observations from Earth. Four large auroral brightening events are evident in the synoptic data, in which the total emitted auroral power increases by a factor of 3-4 for a few hours. Only one of these brightening events correlates well with large transient increases in solar wind ram pressure. The brightening events which are not associated with the solar wind generally have a risetime of ~2 h and a decay time of ~5 h.

12.
Nature ; 549(7670): 66-69, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28880294

ABSTRACT

The most intense auroral emissions from Earth's polar regions, called discrete for their sharply defined spatial configurations, are generated by a process involving coherent acceleration of electrons by slowly evolving, powerful electric fields directed along the magnetic field lines that connect Earth's space environment to its polar regions. In contrast, Earth's less intense auroras are generally caused by wave scattering of magnetically trapped populations of hot electrons (in the case of diffuse aurora) or by the turbulent or stochastic downward acceleration of electrons along magnetic field lines by waves during transitory periods (in the case of broadband or Alfvénic aurora). Jupiter's relatively steady main aurora has a power density that is so much larger than Earth's that it has been taken for granted that it must be generated primarily by the discrete auroral process. However, preliminary in situ measurements of Jupiter's auroral regions yielded no evidence of such a process. Here we report observations of distinct, high-energy, downward, discrete electron acceleration in Jupiter's auroral polar regions. We also infer upward magnetic-field-aligned electric potentials of up to 400 kiloelectronvolts, an order of magnitude larger than the largest potentials observed at Earth. Despite the magnitude of these upward electric potentials and the expectations from observations at Earth, the downward energy flux from discrete acceleration is less at Jupiter than that caused by broadband or stochastic processes, with broadband and stochastic characteristics that are substantially different from those at Earth.

13.
Science ; 356(6340): 826-832, 2017 05 26.
Article in English | MEDLINE | ID: mdl-28546207

ABSTRACT

The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno's capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context for Juno's passage over the poles and traverse of Jupiter's hazardous inner radiation belts. Juno's energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno transited beneath the most intense parts of the radiation belts, passed about 4000 kilometers above the cloud tops at closest approach, well inside the jovian rings, and recorded the electrical signatures of high-velocity impacts with small particles as it traversed the equator.

14.
Science ; 351(6279): aad9045, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26989259

ABSTRACT

The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system.

15.
Science ; 350(6258): aad1815, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26472913

ABSTRACT

The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto's atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Pluto's large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected.

16.
Astrobiology ; 13(8): 740-73, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23924246

ABSTRACT

The prospect of a future soft landing on the surface of Europa is enticing, as it would create science opportunities that could not be achieved through flyby or orbital remote sensing, with direct relevance to Europa's potential habitability. Here, we summarize the science of a Europa lander concept, as developed by our NASA-commissioned Science Definition Team. The science concept concentrates on observations that can best be achieved by in situ examination of Europa from its surface. We discuss the suggested science objectives and investigations for a Europa lander mission, along with a model planning payload of instruments that could address these objectives. The highest priority is active sampling of Europa's non-ice material from at least two different depths (0.5-2 cm and 5-10 cm) to understand its detailed composition and chemistry and the specific nature of salts, any organic materials, and other contaminants. A secondary focus is geophysical prospecting of Europa, through seismology and magnetometry, to probe the satellite's ice shell and ocean. Finally, the surface geology can be characterized in situ at a human scale. A Europa lander could take advantage of the complex radiation environment of the satellite, landing where modeling suggests that radiation is about an order of magnitude less intense than in other regions. However, to choose a landing site that is safe and would yield the maximum science return, thorough reconnaissance of Europa would be required prior to selecting a scientifically optimized landing site.


Subject(s)
Exobiology , Geology , Jupiter , Space Flight , Oceans and Seas
17.
Science ; 318(5848): 217-20, 2007 Oct 12.
Article in English | MEDLINE | ID: mdl-17932282

ABSTRACT

Jupiter's magnetotail is the largest cohesive structure in the solar system and marks the loss of vast numbers of heavy ions from the Jupiter system. The New Horizons spacecraft traversed the magnetotail to distances exceeding 2500 jovian radii (R(J)) and revealed a remarkable diversity of plasma populations and structures throughout its length. Ions evolve from a hot plasma disk distribution at approximately 100 R(J) to slower, persistent flows down the tail that become increasingly variable in flux and mean energy. The plasma is highly structured-exhibiting sharp breaks, smooth variations, and apparent plasmoids-and contains ions from both Io and Jupiter's ionosphere with intense bursts of H(+) and H(+)(3). Quasi-periodic changes were seen in flux at approximately 450 and approximately 1500 R(J) with a 10-hour period. Other variations in flow speed at approximately 600 to 1000 R(J) with a 3- to 4-day period may be attributable to plasmoids moving down the tail.


Subject(s)
Jupiter , Extraterrestrial Environment , Hydrogen , Ions , Magnetics , Protons , Spacecraft
18.
Science ; 318(5848): 220-2, 2007 Oct 12.
Article in English | MEDLINE | ID: mdl-17932283

ABSTRACT

When the solar wind hits Jupiter's magnetic field, it creates a long magnetotail trailing behind the planet that channels material out of the Jupiter system. The New Horizons spacecraft traversed the length of the jovian magnetotail to >2500 jovian radii (RJ; 1 RJ identical with 71,400 kilometers), observing a high-temperature, multispecies population of energetic particles. Velocity dispersions, anisotropies, and compositional variation seen in the deep-tail (greater, similar 500 RJ) with a approximately 3-day periodicity are similar to variations seen closer to Jupiter in Galileo data. The signatures suggest plasma streaming away from the planet and injection sites in the near-tail region (approximately 200 to 400 RJ) that could be related to magnetic reconnection events. The tail structure remains coherent at least until it reaches the magnetosheath at 1655 RJ.


Subject(s)
Jupiter , Electrons , Extraterrestrial Environment , Ions , Oxygen , Protons , Spacecraft , Sulfur , Temperature
19.
Science ; 318(5848): 237-40, 2007 Oct 12.
Article in English | MEDLINE | ID: mdl-17932289

ABSTRACT

The New Horizons (NH) spacecraft observed Io's aurora in eclipse on four occasions during spring 2007. NH Alice ultraviolet spectroscopy and concurrent Hubble Space Telescope ultraviolet imaging in eclipse investigate the relative contribution of volcanoes to Io's atmosphere and its interaction with Jupiter's magnetosphere. Auroral brightness and morphology variations after eclipse ingress and egress reveal changes in the relative contribution of sublimation and volcanic sources to the atmosphere. Brightnesses viewed at different geometries are best explained by a dramatic difference between the dayside and nightside atmospheric density. Far-ultraviolet aurora morphology reveals the influence of plumes on Io's electrodynamic interaction with Jupiter's magnetosphere. Comparisons to detailed simulations of Io's aurora indicate that volcanoes supply 1 to 3% of the dayside atmosphere.

20.
Lancet ; 336(8715): 606-10, 1990 Sep 08.
Article in English | MEDLINE | ID: mdl-1975387

ABSTRACT

The Bristol Cancer Help Centre (BCHC) was set up in 1979 to offer various alternative therapies and treatments for patients with cancer. It attracted much public interest and a high demand for its services--and profound medical scepticism. In a study beginning in 1986 of 334 women with breast cancer attending the centre for the first time between June, 1986, and October, 1987, information about the diagnosis was obtained from case notes. Controls were a sample of 461 women with breast cancer attending a specialist cancer hospital or two district general hospitals. The same information was obtained for the control group as for the BCHC group. All patients have been followed up to June, 1988. 85% of patients with breast cancer attending the BCHC were aged under 55 at diagnosis. More than half had experienced recurrence of their disease before entry. For patients metastasis-free at entry, metastasis-free survival in the BCHC group was significantly poorer than in the controls (relapse rate ratio 2.85). Survival in relapsed cases was significantly inferior to that in the control group (hazard ratio 1.81). For cases metastasis-free at entry to the BCHC there was a significant difference in survival between cases and controls, confirming the difference in metastasis-free survival. There was no significant difference in survival or disease-free survival between the cancer hospital controls and other controls.


Subject(s)
Breast Neoplasms/mortality , Complementary Therapies , Adult , Aged , Analysis of Variance , Breast Neoplasms/therapy , England , Female , Follow-Up Studies , Humans , Middle Aged , Neoplasm Recurrence, Local
SELECTION OF CITATIONS
SEARCH DETAIL
...