Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(23): 25084-25093, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882081

ABSTRACT

Three hematite grades with different particle sizes (i.e., large, medium, and small) were evaluated, and the selection criterion was median particle size. The investigation involves the following stages: rheology, filtration, and filter cake formation. Different rheological models including Bingham, Power law, Herschel-Bulkley, and Robertson-Stiff were implemented to find the optimum model for characterizing fluid behavior. The results showed that medium-sized hematite particles produced the highest filtration volume, filter cake thickness, and filter cake permeability. These results were confirmed when a varied pore distribution filtration medium was used. The NMR results showed the same trend where the highest reduction in core porosity was found when a medium-size particle distribution was used. There is a minimum alteration in the rheological behavior of the drilling fluid as the particle size was varied, and the drilling fluids showed a shear-thinning behavior and were best described by the Herschel-Bulkley model. Particle size ratio emerges as a key factor for controlling and enhancing the filtration properties and filter cake characteristics.

2.
ACS Omega ; 8(2): 2155-2163, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36687097

ABSTRACT

Drilling fluid is a critical component in drilling operation due to its various functions. It consists of many elements, and one of the main components is the weighting material which controls the mud density. The weighting material type and concentration have a significant impact on the drilling fluid properties. A common weighting material used in the oil and gas industry is barite. In this work, the impact of barite concentration on water-based drilling fluid was evaluated. The investigated drilling fluid properties are density, pH value, filtration behavior, and rheological parameters. An intense investigation was carried out to evaluate the impact of barite concentration on the filtration and filter cake sealing properties. The density and pH values were measured at room temperature, filtration test was performed at room temperature, and differential pressure was equal to 100 psi. The rheological parameters were determined after hot rolling for 16 h at a temperature of 250 °F. The results showed that both the density and pH value increased linearly with barite dosage. The filtration volume, filter cake thickness, and permeability increased with the incremental increase in barite dosage, and the exponential relationship was the best in describing the relation with barite concentration. However, the filter cake porosity had an inverse proportional relation with barite dosage. In the case of rheological properties, all the investigated properties including the plastic viscosity, yield point, ratio of yield point to plastic viscosity, and gel strength at two different times (i.e., 10 s and 10 min) increased in general as the barite concentration increased.

3.
ACS Omega ; 8(1): 614-625, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36643499

ABSTRACT

Red mud is generated from alumina production through bauxite digestion with caustic soda. Ma'aden aluminum production estimated the abundance in a million tons as 2.65:1:2 for bauxite, alumina, and red mud, respectively. The real challenge when it comes to red mud pertains to storage capacity; many solutions have been put forward in different industries, and in this study, the utilization of the red mud waste material is presented as a potential weighting material that could be incorporated into the design of drilling fluid systems. This study provides an assessment of the utilization of red mud as a drilling fluid, and it provides directions for the use of red mud in drilling mud systems as a filtration agent and as a finely divided solid used as a weighting material to increase the density of a given drilling fluid system. This study investigates the viability of red mud as an effective additive to drilling fluid and its effect on rheology and filtration. Different techniques are employed in red mud characterization and performance evaluation. The study assesses red mud as an inert solid in a drilling fluid system by investigating the drilling fluid rheology, apparent viscosity (AV), plastic viscosity (PV), and yield point (YP) before and after hot rolling at 150 °F, in addition to filtration properties under low-pressure, low-temperature and higher-pressure, higher-temperature conditions (at 150 °F and a differential pressure of 250 psi). Also, the study highlights the red mud solid characterization, material preparation, and acid dissolution at 150 °F. This study attempts to view the red mud situation from a practical application angle (primarily in the oil and gas industry). Test results show stable drilling mud fluid properties when utilizing red mud solid additives as weighting agents. The drilling mud exhibits relatively low plastic viscosity, gel strength, excellent sag behavior, and reasonable filtration control, even under HPHT conditions in aqueous-based fluids. The material dissolves in acid. Accordingly, red mud provides a viable option for weighting agents and filtration control.

4.
Sci Rep ; 12(1): 18445, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36323717

ABSTRACT

A required feature of any drilling formulation is to mitigate the formation damage by having an excellent filtration and filter cake properties. The key factor for preventing and limiting formation damage is to improve the sealing qualities of the planned drilling fluid. In this study, a new novel filtration agent called "perlite" was introduced for improving the manganese tetroxide mud cake ability for better sealing features. The perlite particles were loaded to formulation containing the manganese tetroxide as weighting agent. The water-based drilling mud was designed at high densities (14.25 and 17.2 ppg). Perlite was added in varied concentrations to reach the optimum performance. The filtration test conducted at reservoir temperature of 250 °F and a differential pressure of 300 psi to form the filter cake. The tests were performed using sandstone cores with two different permeability categories (low and high permeabilities) as the filtration media. This gave the full picture of perlite performance as implemented for different formation properties and considering the drilling fluid properties. The formed filter cake structure and chemical composition was evaluated using scanning electron energy-dispersive X-ray (SEM-EDS). The presented results illustrated how the perlite was compatible to be added to the manganese tetroxide weighting agents in the same formulation. In addition, it has the capacity to improve the filter cake's sealing qualities, lowering the filtration volume by 41% and the filter cake internal and external layers permeability by 58% and 25%, respectively. Moreover, the EDS analysis showed that the perlite particles are concentrated generally in the internal layer of the filter cake.


Subject(s)
Filtration , Manganese , Filtration/methods , Aluminum Oxide/chemistry , Permeability
5.
ACS Omega ; 7(21): 17976-17983, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35664613

ABSTRACT

The barite scale is one of the most common scales in the oil and gas industry. It can form in the reservoir or precipitate in different production equipment. The formation of such a scale will significantly minimize the capillary diameter of the flow channels and consequently shrink the well productivity. On the other hand, the production of movable barite particles causes severe erosion for the installed equipment. There are several sources of the barite scale such as mixing of incompatible brines and solid invasion of the barite weighted during drilling. In addition, the barite scale could be produced during the interaction of the chelating agent solutions with the reservoir formation during the filter cake removal process (secondary damage). The main focus of this study is to prevent the barite scale inside the carbonate formations during filter cake removal. The capability of a solution consisting of both diethylenetriamine pentaacetic acid (DTPA) and ethylenediamine tetraacetic acid (EDTA) as a novel solution to prevent barite scale formation in carbonate formations after the removal of the barite filter cake was evaluated. A series of laboratory experiments were accomplished to characterize the barite scale and evaluate the performance of the proposed solution. In particular, particle size distribution, scanning electron microscopy, X-ray diffraction, core flooding, NMR spectroscopy, solubility test, and inductively coupled plasma (ICP) spectroscopy tests were conducted for this aim. The experiments were performed using carbonate core samples. The results showed that the proposed solution was able to load 35 000 ppm barium in the presence of calcite ions. The addition of EDTA tended to inhibit the barite deposition and improve the rate of the calcite reaction. NMR results showed that a mixture of DTPA and EDTA (20%) can stimulate the macropores, resulting in an increase in the return permeability by 1.4-1.8 times of the initial value, while the precipitation that occurred in the micropores could be ignored with respect to the overall porosity improvements.

6.
ACS Omega ; 6(37): 24039-24050, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34568682

ABSTRACT

The filter cake formed during a filtration process plays a vital role in the success of a drilling operation. There are several factors affecting the filter cake build-up such as drilled formation, drilling fluid properties, and well pressure and temperature. The collective impact of these two factors (i.e., formation and the drilling fluid) on the filter cake build-up needs to be fully investigated. In this study, two types of formations represented as limestone and sandstone were used with different weighting materials to assess and compare their impact on the filter cake properties, filtration behavior, and solid invasion. The used weighting materials are manganese tetroxide, ilmenite, barite, and hematite. The filter cake was formed under a temperature of 200 °F and differential pressure of 300 psi. Nuclear magnetic resonance spectroscopy was employed to explore the pore structure of the used core samples. The results showed that the properties (i.e., shape and dimensions) of the different weighting materials are the dominant factors compared to the formation characteristics in most of the investigated filter cake properties. Nevertheless, the formation properties, namely, the permeability and pore structure, have a somehow higher contribution when it comes to the filter cake porosity and thickness. For solid invasion, there were no clear results about the main factor contributing to this issue.

7.
ACS Omega ; 6(24): 16176-16186, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34179663

ABSTRACT

Weighting agents such as barite, micromax, ilmenite, and hematite are commonly added to drilling fluids to produce high-density fluids that could be used to drill deep oil and gas wells. Increasing the drilling fluid density leads to highly conspicuous fluctuation in the drilling fluid characteristics. In this study, the variation in the drilling fluid's rheological and filtration properties induced by adding different weighting agents was evaluated. For this purpose, several water-based drilling fluid samples were prepared and weighted up using the same concentration of various weighting materials including barite, micromax, ilmenite, and hematite. The characteristics of the used weighting agents' (particle size distribution and mineralogy) were measured. Subsequently, the rheological properties of the drilling fluid were obtained using a Fann viscometer at 80 °F. The filtration test was carried out at 200 °F and 300 psi differential pressure to form a filter cake over the sandstone core samples. The properties of the formed filter cake layer such as thickness, porosity, and permeability were determined. Furthermore, the typical properties of core samples including porosity and permeability were assessed before and after the filtration test. The displayed results confirmed that the plastic viscosity (PV), yield point (YP), and filter cake sealing properties were all significantly influenced by the ratio of the large to fine particle size (D90/D10) of the weighting agents irrespective of the weighting material type. Among the examined weighting agents, barite showed novel potency to control both rheological and filter cake properties for 14 ppg drilling fluid. The results showed that D90/D10 is a key factor for the PV and YP properties as increasing the D90/D10 ratio caused PV increase and YP decrease, which indicated that the interaction among the loaded weighting materials in the drilling fluid dominated its viscosity.

8.
ACS Omega ; 6(7): 4793-4799, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33644587

ABSTRACT

Conventional heavy-weight oil and gas well cement systems formulated with barite exhibit high viscosities. Additionally, the heavy-weight powder tends to settle, causing density variation and disruption in the porosity of the hardened cement cores. Studies have shown that such problems can be mitigated by controlling the particle size distribution of the cement system. The main objective of this study is to evaluate the effect of perlite powder particles on the fluid and hardened properties of barite-based cement systems. Barite heavy-weight cement slurries containing 0, 1, 2, and 3% by weight of dry cement (BWOC) of perlite powder were prepared. The rheological study was performed at a bottomhole circulating temperature (BHCT) of 150 °F and ambient pressure. An ultrasonic cement analyzer (UCA) and a high-temperature-high-pressure (HTHP) curing chamber were used to cure samples for 24 h at a bottomhole static temperature (BHST) of 292 °F and pressure of 3000 psi. Porosity measurements were performed using the nuclear magnetic resonance (NMR) technique. The results indicate that the incorporation of perlite powder into conventional barite-based heavy-weight cement slurry causes modifications in the properties of the systems. In general, the plastic viscosity decreases, while the yield point and gel strength increase with increasing perlite concentration. The reduction in plastic viscosity also reduces the pump pressure, while the increase in yield point and gel strength reduces particle sedimentation. Additionally, the compressive strength and tensile strength of hardened cement increase, while the wait-on-cement time decreases. NMR studies indicate that perlite reduces the porosity variation that exists in conventional barite-based cement systems due to the formation of stable cement systems.

9.
ACS Omega ; 6(5): 4100-4110, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33585785

ABSTRACT

Drilled formations are commonly invaded by drilling fluids during the drilling operations, and as a result, the rock pore system will have alterations that consequently alter the rock properties. The objective of this study is to investigate the impact of the most commonly used weighting materials in water-based mud (WBM) on the Berea Buff sandstone pore system and rock characteristics. Rock-mud interaction was imposed by using a customized high-pressure high-temperature filtration test cell under 300 psi differential pressure and 200 °F temperature to simulate downhole conditions during drilling that affect the rock-mud interaction. Extensive lab analysis was accomplished to investigate the rock characteristic alterations in terms of rock porosity, permeability, pore size distribution, flow characteristics, resistivity, and acoustic properties. Ilmenite-WBM showed the maximum values (8.3 cm3 filtrate volume and 7.6 mm cake thickness), while barite recorded the lowest filtrate volume (5.3 cm3) and thickness (3 mm). Nuclear magnetic resonance profiles illustrated the changes in the rock pore system due to the dominant precipitation or dissolution effects. A general porosity reduction was recorded with all mud types that ranged from 4.2 to 9.9% for ilmenite and Micromax, respectively. The rock permeability showed severe damage after mud exposure and a reduction in the pore throat radius. After mud invasion, the rock electrical resistivity showed alterations based on the mineralogical composition of the weighting materials that replaced the saturated brine from the rock pores. Compressional wave velocities (V p) showed an increasing trend as V p of Micromax-WBM increased by 4.5%, while hematite- and ilmenite-WBMs recorded the minimum increase of 1.8%. A general reduction was found for shear wave velocities (V s); Micromax-WBM showed the highest V s reduction by 6.6%, while ilmenite-WBM recorded the minimum reduction of 1.8%. The pore system alterations are the main reason behind V p increase, where the rock lithology alterations controlled the V s changes. The study findings will add more for the rock logging interpretation and rock properties alterations after the mud exposure.

10.
ACS Omega ; 5(50): 32573-32582, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33376894

ABSTRACT

Barite settling is one of the common drilling fluid issues encountered while drilling deep wells. In this study, the effect of perlite on the properties and stability of water-based drilling fluid was investigated. Perlite is an inexpensive additive used in different industrial applications such as bricks, concrete, thermal insulators, sludge absorbents, fillers, tiles, ruminants, and poultry. Perlite additive was also introduced to the oil industry in drilling applications as an effective fluid loss control agent to reduce the drilling fluid invasion into the formations. Perlite was added to the drilling fluid in various concentrations, ranging between 0 and 3.0 lb/bbl. The sag test was performed to assess the drilling fluid's stability under dynamic and static conditions at a temperature of 120/250 °F. Then, the impact of perlite on the properties of drilling fluid was assessed by measuring the density and pH at room temperature. While the rheological, viscoelastic, and filtration properties were evaluated at 250 °F. This study showed that an increase in perlite concentration, from 0 to 3 lb/bbl, slightly reduced the pH of the drilling mud; however, all of the values were within the acceptable pH range (9-11). In contrast, this concentration of perlite had an immeasurable impact on drilling fluid density. Perlite enhanced the drilling fluid's homogeneity and stability by reducing the dynamic and static sag factors, and 3.0 lb/bbl perlite was adequate to eliminate barite sag at a temperature up to 250 °F. Perlite was found to be effective in improving the rheological and viscoelastic properties. A significant enhancement of filtration properties was observed by the reduction in filtrate volume and filter cake thickness by 64 and 31%, respectively.

11.
Sci Rep ; 10(1): 15773, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32978508

ABSTRACT

In sandstone formations, the quartz particles integrate with drilling fluid solids and become part of the filter cake structure. As a result, the dissolution rate of the filter cake diminishes and reduces the removal efficiency. This paper presents a novel solution to overcome the challenges that restricts the filter cake removal process such as the presence of the quartz layer and the polymer coat. A multi-stage method for removing the filter cake from a wellbore is presented. The composition of the new formulation is; ammonium fluoride (NH4F), with a strong oxidizer, such as sodium bromate (NaBrO3) causes an exothermic reaction in the first stage, thereby removing the quartz layer and polymer coat in the filter cake by the in-situ generated HF acid. During the second stage for the barite-based filter cake, chelating agents combined with convertor catalysts were used to dissolve the barite. Solubility experiments were conducted to evaluate the efficiency at each stage in the filter cake removal process at 300 ºF and 500 psi. The experimental results showed that the formulation consisting of ammonium fluoride (NH4F), with a strong oxidizer (sodium bromate,NaBrO3), combined with exothermic reaction was able to generate HF in-situ, which in turn dissolved the quartz mineral and remove the polymer from the filter cake.

SELECTION OF CITATIONS
SEARCH DETAIL
...